Answer:
it is reducely very iloretable chance for a software engineer to give an end to this question
Answer:
Speed of aircraft ; (V_1) = 83.9 m/s
Explanation:
The height at which aircraft is flying = 3000 m
The differential pressure = 3200 N/m²
From the table i attached, the density of air at 3000 m altitude is; ρ = 0.909 kg/m3
Now, we will solve this question under the assumption that the air flow is steady, incompressible and irrotational with negligible frictional and wind effects.
Thus, let's apply the Bernoulli equation :
P1/ρg + (V_1)²/2g + z1 = P2/ρg + (V_2)²/2g + z2
Now, neglecting head difference due to high altitude i.e ( z1=z2 ) and V2 =0 at stagnation point.
We'll obtain ;
P1/ρg + (V_1)²/2g = P2/ρg
Let's make V_1 the subject;
(V_1)² = 2(P1 - P2)/ρ
(V_1) = √(2(P1 - P2)/ρ)
P1 - P2 is the differential pressure and has a value of 3200 N/m² from the question
Thus,
(V_1) = √(2 x 3200)/0.909)
(V_1) = 83.9 m/s
Answer:
Yes, the flow is turbulent.
Explanation:
Reynolds number gives the nature of flow. If he Reynolds number is less than 2000 then the flow is laminar else turbulent.
Given:
Diameter of pipe is 10mm.
Velocity of the pipe is 1m/s.
Temperature of water is 200°C.
The kinematic viscosity at temperature 200°C is
m2/s.
Calculation:
Step1
Expression for Reynolds number is given as follows:

Here, v is velocity,
is kinematic viscosity, d is diameter and Re is Reynolds number.
Substitute the values in the above equation as follows:


Re=64226.07579
Thus, the Reynolds number is 64226.07579. This is greater than 2000.
Hence, the given flow is turbulent flow.
Answer:
the two defects of a simple cell are:
1. Polarization
2. Local action
Answer:
A)The sketches for the required planes were drawn in the first attachment.
B)The sketches for the required directions were drawn in the second attachment.
To draw a plane in a simple cubic lattice, you have to follow these instructions:
1- the cube has 3 main directions called "a", "b" and "c" (as shown in the first attachment)
2- The coordinates of that plane are written as: π:(1/a₀ 1/b₀ 1/c₀) (if one of the coordinates is 0, for example (1 1 0), c₀ is ∞, therefore that plane never cross the direction c).
3- Identify the points a₀, b₀, and c₀ at the plane that crosses this main directions and point them in the cubic cell.
4- Join the points.
To draw a direction in a simple cubic lattice, you have to follow these instructions:
1- Identify the points a₀, b₀, and c₀ in the cubic cell.
2- Draw the direction as a vector-like (a₀ b₀ c₀).