Answer:
There is not going to be pressure build up in the system,that is isobaric process.
Explanation:
Assumptions to be made
1. No mass is gained or lost during the heating process.
2. There are no friction losses,so work is transmitted efficiently.
3. It was started the water in the drum and its surrounding have same temperature.
4. This system is closed,so there is no mass transfer across its boundaries.
Answer: The energy system related to your question is missing attached below is the energy system.
answer:
a) Work done = Net heat transfer
Q1 - Q2 + Q + W = 0
b) rate of work input ( W ) = 6.88 kW
Explanation:
Assuming CPair = 1.005 KJ/Kg/K
<u>Write the First law balance around the system and rate of work input to the system</u>
First law balance ( thermodynamics ) :
Work done = Net heat transfer
Q1 - Q2 + Q + W = 0 ---- ( 1 )
rate of work input into the system
W = Q2 - Q1 - Q -------- ( 2 )
where : Q2 = mCp T = 1.65 * 1.005 * 293 = 485.86 Kw
Q2 = mCp T = 1.65 * 1.005 * 308 = 510.74 Kw
Q = 18 Kw
Insert values into equation 2 above
W = 6.88 Kw
Answer:
a. V = 109.64 × 10⁵ ft/min
b. Mw = 654519.54 kg/hr
Explanation:
Given Parameters
mass flow rate of water, Mw = 90000g/min = 6607.33 kg/s
inlet temperature of water, T1 = 84 F = 28.89 C
outlet temperature of water, T2 = 68 F = 20 C
specific heat capacity of water, c = 4.18kJ/kgK
rate of heat remover from water, Qw is given by
Qw = 6607.33[28.89 - 20] * 4.18
Qw = 245529.545kw
For air, inlet condition
DBT = 70 F hi = 43.43 kJ/kg
WBT = 60 F wi = 0.00874 kJ/kg
u1 = 0.8445 m/kg
oulet condition,
DBT = 70 F RH = 100.1
h1 = 83.504kJ/kg
Wo = 0.222kJ/kg
check the attached file for complete solution
Answer:
Explanation:
The detailed steps and appropriate calculation with analysis is as shown in the attachment.
Answer:
A working with machinery be a common type of caught-in and caught-between hazard is described below in complete detail.
Explanation:
“Caught in-between” accidents kill mechanics in a variety of techniques. These incorporate cave-ins and other hazards of tunneling activity; body parts extracted into unconscious machinery; reaching within the swing range of cranes and other installation material; caught between machine & fixed objects.