C6H12O6 molar mass: 180.15768 g
solute: sugar
molarity = moles of solute / liters of solution
Jones Soda:
33 g / 180.15768 g = 0.18 moles C6H12O6
M = 0.18 g / 0.355 L
M = 0.52
Sierra Mist:
62 g / 180.15768 g = 0.34 moles C6H12O6
M = 0.34 g / 0.591 L
M = 0.58
Sienna Mist has a higher molarity and is more concentrated.
Answer:
Force of attraction = 35.96
N
Explanation:
Given: charge on anion = -2
Charge on cation = +2
Distance = 1 nm =
m
To calculate: Force of attraction.
Solution: The force of attraction is calculated by using equation,
---(1)
where, q represents the charge and the subscripts 1 and 2 represents cation and anion.
k = 
F = force of attraction
r = distance between ions.
Substituting all the values in the equation (1) the equation becomes

Force of attraction = 35.96
N
Answer:
The <u>equilibrium constant</u> is:

Explanation:
The correct equation is:
Thus, with the equilibrium concentrations you can calculate the equilibrium constant, Kc.
The equation for the equilibrium constant is:
![k_c=\dfrac{[NH_3]^2}{[N_2]\cdot [H_2]^3}](https://tex.z-dn.net/?f=k_c%3D%5Cdfrac%7B%5BNH_3%5D%5E2%7D%7B%5BN_2%5D%5Ccdot%20%5BH_2%5D%5E3%7D)
Substituting:


Answer:
Z=22.70
Explanation:
It is given that,
An element Z that has two naturally occurring isotopes with the following percent abundances as follows :
The isotope with a mass number 22 is 65.0% abundant; the isotope with a mass number 24 is 35.0% abundant.
The average atomic mass for element Z is given by :

So, the average atomic mass for element Z is 22.70.