Answer:
Explanation:
Expression for relative velocity
= 
= (.54 + .82 )c/ 
= 1.36 c / 1.4428
= .94 c
β = .94
<span>When n=4 subdivisions distance traveled = 40 X 12 = 480
When n=2 subdivisions distance traveled = 30 X 6 = 180
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions here.
</span>
Answer:
w = 4,786 rad / s
, f = 0.76176 Hz
Explanation:
For this problem let's use the concept of angular momentum
L = I w
The system is formed by the two discs, during the impact the system remains isolated, we have the forces are internal, this implies that the external torque is zero and the angular momentum is conserved
Initial Before sticking
L₀ = 0 + I₂ w₂
Final after coupling
= (I₁ + I₂) w
The moments of inertia of a disk with an axis of rotation in its center are
I = ½ M R²
How the moment is preserved
L₀ = 
I₂ w₂ = (I₁ + I₂) w
w = w₂ I₂ / (I₁ + I₂)
Let's reduce the units to the SI System
d₁ = 60 cm = 0.60 m
d₂ = 40 cm = 0.40 m
f₂ = 200 min-1 (1 min / 60 s) = 3.33 Hz
Angular velocity and frequency are related.
w₂ = 2 π f₂
w₂ = 2π 3.33
w₂ = 20.94 rad / s
Let's replace
w = w₂ (½ M₂ R₂²) / (½ M₁ R₁² + ½ M₂ R₂²)
w = w₂ M₂ R₂² / (M₁ R₁² + M₂ R₂²)
Let's calculate
w = 20.94 8 0.40² / (12 0.60² + 8 0.40²)
w = 20.94 1.28 / 5.6
w = 4,786 rad / s
Angular velocity and frequency are related.
w = 2π f
f = w / 2π
f = 4.786 / 2π
f = 0.76176 Hz
Answer:the answer should be dark energy
Explanation:
Answer:
2.83 x 10^4m/s
Explanation:
First, let us calculate the time taken by the object to hit the surface of the earth.
H = 4.1 x 10^7m
g = 9.8m/s2
t = √(2H/g)
t = √((2x 4.1 x 10^7) /9.8)
t = 2892.64secs
Now, we can find the velocity with which the object strikes the earth as follows:
V = gt
V = 9.8 x 2892.64
V = 2.83 x 10^4m/s