Answer:<span>Humid air is lighter, so it has lower pressure.
The reason is the molecules of water are H2O, whose molar mass is 18 g/mol.
These molecules displaces molecules of N2 and O2, whose molar masses are:
N2: 2*14g/mol = 28 g/mol, and
O2: 2*16g/mol = 32 g/mol.
Then molecules of 28g/mol and 32 g/mol are being replaced with molecules of 18g/mol, leading to a lower weight of the same volume of air, which results in lower pressure.
</span>
Answer:
a) T² = (
) r³
b) veloicity the dependency is the inverse of the root of the distance
kinetic energy depends on the inverse of the distance
potential energy dependency is the inverse of distance
angular momentum depends directly on the root of the distance
Explanation:
1) for this exercise we will use Newton's second law
F = ma
in this case the acceleration is centripetal
a = v² / r
the linear and angular variable are related
v = w r
we substitute
a = w² r
force is the universal force of attraction
F = 
we substitute

w² = 
angular velocity is related to frequency and period
w = 2π f = 2π / T
we substitute

the final equation is
T² = () r³
b) the speed of the orbit can be found
v = w r
v = 
v = 
in this case the dependency is the inverse of the root of the distance
Kinetic energy
K = ½ M v²
K = ½ M GM / r
K = ½ GM² 1 / r
the kinetic energy depends on the inverse of the distance
Potential energy
U =
U = -G mM / r
dependency is the inverse of distance
Angular momentum
L = r x p
for a circular orbit
L = r p = r Mv
L =
L =
The angular momentum depends directly on the root of the distance
Answer:
jwhgrewhuejqiwmkosjcdihwbfuqjiwdkmojcshidvwuf hiiii againnnn :)) good luck
Answer:
The acorn hasn't hit the ground because it only falsl half of the branch distance from the ground
Explanation:
given information:
h =9.8
t =1 s
g = 9.8
the average speed
v = 1/2 gt²
= 1/2 (9.8) (1)²
= 4.8 m/s
the distance in 1s
h = v t
= 4.8 (1)
= 4.8 m
the acorn hasn't hit the ground because it only falsl half of the branch distance from the ground
=