Answer:
<h2>
15m/s</h2>
Explanation:
The equation for a traveling wave as expressed as y(x, t) = A cos(kx −
t) where An is the amplitude f oscillation,
is the angular velocity and x is the horizontal displacement and y is the vertical displacement.
From the formula;
where;

Before we can get the transverse speed, we need to get the frequency and the wavelength.
frequency = 1/period
Given period = 2/15 s
Frequency = 
frequency = 1 * 15/2
frequency f = 15/2 Hertz
Given wavelength
= 2m
Transverse speed 

Hence, the transverse speed at that point is 15m/s
<h2>Hey there!</h2>
<h2>The answer will be:</h2>
<h3>"Host"</h3>
<h2>Explanation:</h2><h2 /><h3>Viruses use the energy of the <u>host</u> cells to reproduce themselves.</h3>
<h2>Hope it help you</h2>
Answer:
Taking forces along the plane
F cos θ - M g sin θ -100 = M a net of forces along the plane
F = (M a + M g * .5 + 100) / .866 solving for F
F = (80 * 1.5 + 80 * 9.8 * .5 + 100) / .866 = 707 N
F = 707 N acting along the plane
Fn = F sin θ + M g cos θ forces acting perpendicular to plane
Fn = 707 * 1/2 + 80 * 9.8 * .866 = 1030 Newtons forces normal to plane
(this would give a coefficient of friction of 100 / 1030 = .097 = Fn)
Answer:
3675 J
Explanation:
Gravitational Potential Energy =
× mass × g × height
( g is the gravitation field strength )
Mass = 50 kg
G = 9.8 N/kg ( this is always the same )
Height = 15 m
Gravitational Potential Energy =
× 50 ×9.8 × 15
= 3675 J
The solution that would most likely be a strongest conductor of electricity is the solution that is most saturated or concentrated. This is because the atoms that are found within the aqueous solutions have become positively charged resulting to the attraction of negatively charged ions that are found in electricity. On the other hand, the least conductive from the aqueous solutions would be the most unsaturated one because of less conductive ions present.