Answer: The closer the planet is to the sun, the faster it travels
Explanation:
The speed of the planets goes down as the chart shows planets farther away from the sun
Answer:
W = (F1 - mg sin θ) L, W = -μ mg cos θ L
Explanation:
Let's use Newton's second law to find the friction force. In these problems the x axis is taken parallel to the plane and the y axis perpendicular to the plane
Y Axis
N -
=
N = W_{y}
X axis
F1 - fr - Wₓ = 0
fr = F1 - Wₓ
Let's use trigonometry to find the components of the weight
sin θ = Wₓ / W
cos θ = W_{y} / W
Wₓ = W sin θ
W_{y} = W cos θ
We substitute
fr = F1 - W sin θ
Work is defined by
W = F .dx
W = F dx cos θ
The friction force is parallel to the plane in the negative direction and the displacement is positive along the plane, so the Angle is 180º and the cos θ= -1
W = -fr x
W = (F1 - mg sin θ) L
Another way to calculate is
fr = μ N
fr = μ W cos θ
the work is
W = -μ mg cos θ L
Answer:
Corpuscular theory of light
Explanation:
In optics, the corpuscular theory of light, arguably set forward by Descartes in 1637, states that light is made up of small discrete particles called "corpuscles" which travel in a straight line with a finite velocity and possess impetus. This was based on an alternate description of atomism of the time period.
Answer:
n_cladding = 1.4764
Explanation:
We are told that θ_max = 5 °
Thus;
θ_max + θ_c = 90°
θ_c = 90° - θ_max
θ_c = 90° - 5°
θ_c = 85°
Now, critical angle is given by;
θ_c = sin^(-1) (n_cladding/n_core)
sin θ_c = (n_cladding/n_core)
n_cladding = (n_core) × sin θ_c
Plugging in the relevant values, we have;
n_cladding = 1.482 × sin 85
n_cladding = 1.4764