Answer:
Where is question 12, we need it to answer this question
Explanation:
Answer:
Explanation:
For resistance of a wire , the formula is as follows
R = ρ L / S
where ρ is specific resistance , L is length and S is cross sectional area
Given L = 14 000 m ,
S = 4.8 x 10⁻⁴ m²
specific resistance of aluminum = 2.8 x 10⁻⁸ ohm-meter
Putting the values in the formula
R = 2.8 x 10⁻⁸ x 14 x 10³ / (4.8 x 10⁻⁴ )
R = 0.8167 ohm .
= .82 ohm .
Answer:
0.0061 J
Explanation:
Parameters given:
Number of turns, N = 111
Radius of turn, r = 2.11 cm = 0.0211 m
Resistance, R = 14.1 ohms
Time taken, t = 0.125 s
Initial magnetic field, Bin = 0.669 T
Final magnetic field, Bfin = 0 T
The energy dissipated in the resistor is given as:
E = P * t
Where P = Power dissipated in the resistor
Power, P, is given as:
P = V² / R
Hence, energy will be:
E = (V² * t) / R
To find the induced voltage (EMF), V:
EMF = [-(Bfin - Bin) * N * A] / t
A is Area of coil
EMF = [-(0 - 0.669) * 111 * pi * 0.0211²] / 0.125
EMF = 0.83 V
Hence, the energy dissipated will be:
E = (0.83² * 0.125) / 14.1
E = 0.0061 J
Answer: D Incorrect film placement
Explanation: The film packet was placed backward in the oral cavity.
Answer:
The final equilibrium T_{f} = 25.7[°C]
Explanation:
In order to solve this problem we must have a clear concept of heat transfer. Heat transfer is defined as the transmission of heat from one body that is at a higher temperature to another at a lower temperature.
That is to say for this case the heat is transferred from the iron to the water, the temperature of the water will increase, while the temperature of the iron will decrease. At the end of the process a thermal balance is found, i.e. the temperature of iron and water will be equal.
The temperature of thermal equilibrium will be T_f.
The heat absorbed by water will be equal to the heat rejected by Iron.

Heat transfer can be found by means of the following equation.

where:
Qiron = Iron heat transfer [kJ]
m = iron mass = 200 [g] = 0.2 [kg]
T_i = Initial temperature of the iron = 300 [°C]
T_f = final temperature [°C]

Cp_iron = 437 [J/kg*°C]
Cp_water = 4200 [J/kg*°C]
![0.2*437*(300-T_{f})=1*4200*(T_{f}-20)\\26220-87.4*T_{f}=4200*T_{f}-84000\\26220+84000=4200*T_{f}+87.4*T_{f}\\110220 = 4287.4*T_{f}\\T_{f}=25.7[C]](https://tex.z-dn.net/?f=0.2%2A437%2A%28300-T_%7Bf%7D%29%3D1%2A4200%2A%28T_%7Bf%7D-20%29%5C%5C26220-87.4%2AT_%7Bf%7D%3D4200%2AT_%7Bf%7D-84000%5C%5C26220%2B84000%3D4200%2AT_%7Bf%7D%2B87.4%2AT_%7Bf%7D%5C%5C110220%20%3D%204287.4%2AT_%7Bf%7D%5C%5CT_%7Bf%7D%3D25.7%5BC%5D)