Option C is the right answer
Answer:
Explanation:
Given
Weight of person
At highest point Magnitude of the normal force
net force at highest point
where
centripetal force
Normal Force
Negative sign shows force is in upward direction
At bottom point centripetal force is towards the bottom
Explanation:
Given Data
Total mass=93.5 kg
Rock mass=0.310 kg
Initially wagon speed=0.540 m/s
rock speed=16.5 m/s
To Find
The speed of the wagon
Solution
As the wagon rolls, momentum is given as
P=mv
where
m is mass
v is speed
put the values
P=93.5kg × 0.540 m/s
P =50.49 kg×m/s
Now we have to find the momentum of rock
momentum of rock = mv
momentum of rock = (0.310kg)×(16.5 m/s)
momentum of rock =5.115 kg×m/s
From the conservation of momentum we can find the wagons momentum So
wagon momentum=50.49 -5.115 = 45.375 kg×m/s
Speed of wagon = wagon momentum/(total mass-rock mass)
Speed of wagon=45.375/(93.5-0.310)
Speed of wagon= 0.487 m/s
Throwing rock backward,
momentum of wagon = 50.49+5.115 = 55.605 kg×m/s
Speed of wagon = wagon momentum/(total mass-rock mass)
speed of wagon = 55.605 kg×m/s/(93.5kg-0.310kg)
speed of wagon= 0.5967 m/s
Answer:
Increase,.faster
Explanation:
The kinetic energy of the molecules inside the balloon
increases
which means they are moving
faster
I hope this helps you :)
Answer:
The maximum height reached by the body is 313.6 m
The time to return to its point of projection is 8 s.
Explanation:
Given;
initial velocity of the body, u = 78.4 m/s
at maximum height (h) the final velocity of the body (v) = 0
The following equation is applied to determine the maximum height reached by the body;
v² = u² - 2gh
0 = u² - 2gh
2gh = u²
h = u²/2g
h = (78.4²) / (2 x 9.8)
h = 313.6 m
The time to return to its point of projection is calculated as follows;
at maximum height, the final velocity becomes the initial velocity = 0
h = v + ¹/₂gt²
h = 0 + ¹/₂gt²
h = ¹/₂gt²
2h = gt²
t² = 2h/g
