Answer:
Explanation:
Case I: They have same charge.
Charge on each sphere = q
Distance between them, d = 14.8 cm = 0.148 m
Repulsive force, F = 0.235 N
Use Coulomb's law in electrostatics

By substituting the values


Thus, the charge on each sphere is
.
Case II:
Charge on first sphere = 4q
Charge on second sphere = q
distance between them, d = 0.148 m
Force between them, F = 0.235 N
Use Coulomb's law in electrostatics

By substituting the values


Thus, the charge on second sphere is
and the charge on first sphere is
.
Tan = opposite/adjacent
= 20/15
=4/3
Answer:
15,505 N
Explanation:
Using the principle of conservation of energy, the potential energy loss of the student equals the kinetic energy gain of the student
-ΔU = ΔK
-(U₂ - U₁) = K₂ - K₁ where U₁ = initial potential energy = mgh , U₂ = final potential energy = 0, K₁ = initial kinetic energy = 0 and K₂ = final kinetic energy = 1/2mv²
-(0 - mgh) = 1/2mv² - 0
mgh = 1/2mv² where m = mass of student = 70kg, h = height of platform = 1 m, g = acceleration due to gravity = 9.8 m/s² and v = final velocity of student as he hits the ground.
mgh = 1/2mv²
gh = 1/2v²
v² = 2gh
v = √(2gh)
v = √(2 × 9.8 m/s² × 1 m)
v = √(19.6 m²/s²)
v = 4.43 m/s
Upon impact on the ground and stopping, impulse I = Ft = m(v' - v) where F = force, t = time = 0.02 s, m =mass of student = 70 kg, v = initial velocity on impact = 4.43 m/s and v'= final velocity at stopping = 0 m/s
So Ft = m(v' - v)
F = m(v' - v)/t
substituting the values of the variables, we have
F = 70 kg(0 m/s - 4.43 m/s)/0.02 s
= 70 kg(- 4.43 m/s)/0.02 s
= -310.1 kgm/s ÷ 0.02 s
= -15,505 N
So, the force transmitted to her bones is 15,505 N