Answer:
3 times louder
Explanation:
The Loudness in decibel Db L = 10㏒(I/I₀) where I = sound intensity level and I₀ = threshold of hearing = 10⁻¹² W/m².
Now, for Jessica, I₁ = sound intensity level of Jessica's music = 10⁻⁹
and I₂ = sound intensity level of Braylee's music = 10⁻³
So, substituting the variables into the equation, we have
L₁ = 10㏒(I₁/I₀)
L₁ = 10㏒(10⁻⁹/10⁻¹²)
L₁ = 10㏒(10³)
L₁ = 3 × 10㏒10
L₁ = 30㏒10
L₁ = 30 dB
Now, for Braylee, I₂ = sound intensity level of Braylee's music = 10⁻³
So, substituting the variables into the equation, we have
L₂ = 10㏒(I₁/I₀)
L₂ = 10㏒(10⁻³/10⁻¹²)
L₂ = 10㏒(10⁹)
L₂ = 9 × 10㏒10
L₂ =90㏒10
L₂ = 90 dB
So, the number of times Braylee's music is louder than Jessica's music is L₂/L₁ = 90 dB/30 dB = 3
So, Braylee's music is 3 times louder than Jessica's music
Answer:
Speed = 3 [km/h]
Explanation:
To solve this problem we must use the definition of speed which relates the distance traveled for a while.
Distance = 1.5 [km] = 1500 [m].
time = 0.5 [hr] = 1800 [s]
Speed = Distance/time
Speed = 1.5/0.5
Speed = 3 [km/h] or 1500/1800 = 0.8333[m/s]
Answer:
A thin, taut string tied at both ends and oscillating in its third harmonic has its shape described by the equation y(x,t)=(5.60cm)sin[(0.0340rad/cm)x]sin[(50.0rad/s)t]y(x,t)=(5.60cm)sin[(0.0340rad/cm)x]sin[(50.0rad/s)t], where the origin is at the left end of the string, the x-axis is along the string, and the y-axis is perpendicular to the string. (a) Draw a sketch that shows the standing-wave pattern. (b) Find the amplitude of the two traveling waves that make up this standing wave. (c) What is the length of the string? (d) Find the wavelength, frequency, period, and speed of the traveling waves. (e) Find the maximum transverse speed of a point on the string. (f) What would be the equation y(x, t) for this string if it were vibrating in its eighth harmonic?
Hello! The nontoxic, nonflammable chemicals containing atoms of carbon, chlorine, and fluorine that have created a hole in the ozone layer are the Chlorofluorocarbons (CFCs)
These are compounds developed and improved by Thomas Midgley in the late 1920s. They were used as refrigerants and aerosol propellants.
These compounds created a hole in the ozone layer by the following reactions:
CCl₃F → CCl₂F· + Cl· (In the presence of light. Radical Reaction)
Cl· + O₃ → ClO + O₂
ClO + O₃ → Cl· + O₂
The last 2 reactions can repeat in a radical mechanism and explain why these compounds are so harmful to the ozone layer.
The word that could fit to this is Text Mining. This word also referred to as text data mining, roughly equivalent to text analytics, a process of deriving high-quality information from text. This high quality information derived through the devising of patterns and trends through means such as statistical patter learning.