For the ball to go straight into the goal, the kicker needs to be no more than 6.54 meters away from the goal.
For the ball to arc into the goal, the kicker needs to be between 58.5 and 65.1 meters away from the goal.
<h3>Explanation</h3>
How long does it take for the ball to reach the goal?
Let the distance between the kicker and the goal be
meters.
Horizontal velocity of the ball will always be
until it lands if there's no air resistance.
The ball will arrive at the goal in
seconds after it leaves the kicker.
What will be the height of the ball when it reaches the goal?
Consider the equation
.
For this soccer ball:
,
,
since the player kicks the ball "from ground level."
when the ball reaches the goal.
.
Solve this quadratic equation for
,
.
meters when
meters.
or
meters when
meters.
In other words,
- For the ball to go straight into the goal, the kicker needs to be no more than 6.54 meters away from the goal.
- For the ball to arc into the goal, the kicker needs to be between 58.5 and 65.1 meters away from the goal.
Taking the vertical component of the displacement
1.1 - 0.2 = 0.9 mile
The horizontal component of the displacement
-0.3 mile
The magnitude of the displacement is
√[ (0.9)² + (-0.3) ] = 0.95 mile
The direction is
θ = tan-1 (-0.3/0.9)
θ = 161.57 degrees.
<span>If there isn't any force then the normal contact force will be
N=m*g=7.5*9.81=73.58N
which is 73.58-23=50.58N less
so, there the person must pull at 23 degree upward
break down the tension in two components, vertical and horizontal.
vertical tension= 50.58=T*sin23
T=50.58/sin23=129.45N</span>
<span>The Earth’s internal "((HEAT))" source provides the energy for our dynamic planet, providing it with the driving force for on-going disastrous events such as earthquakes and volcanic eruptions and for plate-tectonic motion. </span>