1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ksju [112]
3 years ago
10

A penguin slides at a constant velocity of 3.57 m/s down an icy incline. The incline slopes above the horizontal at an angle of

9.85°. At the bottom of the incline, the penguin slides onto a horizontal patch of ice. The coefficient of kinetic friction between the penguin and the ice is the same for the incline as for the horizontal patch. How much time is required for the penguin to slide to a halt after entering the horizontal patch of ice?
Physics
1 answer:
igomit [66]3 years ago
8 0

Answer:t=0.81 s

Explanation:

Given

Penguin slides down with constant velocity of 3.57 m/s

as the Penguin Slides with constant velocity therefore F_{net} is zero on Penguin

F_{net}=mg\sin \theta -f_r

f_r=friction Force

f_r=\mu mg

\mu =coefficient of Kinetic friction

mg\sin \theta =\mu mg

\tan \theta =\mu

\mu =\tan 9.85=0.45

after reaching on floor final velocity of penguin will be zero after time t

thus

v=u+at

here a=\mu g

a=0.45\times 9.8=4.41  (deceleration)

0=3.57-4.41\times t

t=\frac{3.57}{4.41}=0.809

t=0.81 s

You might be interested in
The figure below shows a man in a boat on a lake. The man's mass is 74 kg, and the boat's is 135 kg. The man and boat are initia
vazorg [7]

The velocity of the boat after the package is thrown is 0.36 m/s.

<h3>Final velocity of the boat</h3>

Apply the principle of conservation of linear momentum;

Pi = Pf

where;

  • Pi is initial momentum
  • Pf is final momentum

v(74 + 135) = 15 x 5

v(209) = 75

v = 75/209

v = 0.36 m/s

Thus, the velocity of the boat after the package is thrown is 0.36 m/s.

Learn more about velocity here: brainly.com/question/6504879

#SPJ1

7 0
2 years ago
A horizontal force of 92.7 N is applied to a 40.5 kg crate on a rough, level surface. If the crate accelerates at 1.13 m/s2, wha
lord [1]

Answer:

The value is F_f =  46.935 \  N

Explanation:

From the question we are told that

    The  magnitude of the horizontal force is F  =  92.7 \  N

     The mass of the crate is  m  =  40.5 \  kg

     The acceleration of the crate is  a =  1.13 \ m/s

Generally the net force acting on the crate is mathematically represented as

       F_{net} =  F -  F_f =  ma

Here F_f is force of kinetic friction (in N) acting on the crate

      So  

            92.7  -  F_f =  40.5 * 1.13

=>         F_f =  46.935 \  N

5 0
3 years ago
PLEASE HELP ME 45 POINTS
sergij07 [2.7K]

Answer:

a) We kindly invite you to see the explanation and the image attached below.

b) The acceleration of the masses is 4.203 meters per square second.

c) The tension force in the cord is 28.02 newtons.

d) The system will take approximately 0.845 seconds to cover a distance of 1.5 meters.

e) The final speed of the system is 3.551 meters per second.

Explanation:

a) At first we assume that pulley and cord are both ideal, that is, masses are negligible and include the free body diagrams of each mass and the pulley in the image attached below.

b) Both masses are connected to each other by the same cord, the direction of acceleration will be dominated by the mass of greater mass (mass A) and both masses have the same magnitude of acceleration. By the 2nd Newton's Law, we create the following equation of equilibrium:

Mass A

\Sigma F = T - m_{A}\cdot g = -m_{A}\cdot a (1)

Mass B

\Sigma F = T - m_{B}\cdot g = m_{B}\cdot a (2)

Where:

T - Tension force in the cord, measured in newtons.

m_{A}, m_{B} - Masses of blocks A and B, measured in kilograms.

g - Gravitational acceleration, measured in meters per square second.

a - Net acceleration of the each block, measured in meters per square second.

By subtracting (2) by (1), we get an expression for the acceleration of each mass:

m_{B}\cdot a +m_{A}\cdot a = T-m_{B}\cdot g -T + m_{A}\cdot g

(m_{B}+m_{A})\cdot a = (m_{A}-m_{B})\cdot g

a = \frac{m_{A}-m_{B}}{m_{B}+m_{A}} \cdot g

If we know that m_{A} = 5\,kg, m_{B} = 2\,kg and g = 9.807\,\frac{m}{s^{2}}, then the acceleration of the masses is:

a = \left(\frac{5\,kg-2\,kg}{5\,kg+2\,kg}\right) \cdot\left(9.807\,\frac{m}{s^{2}} \right)

a = 4.203\,\frac{m}{s^{2}}

The acceleration of the masses is 4.203 meters per square second.

c) From (2) we get the following expression for the tension force in the cord:

T = m_{B}\cdot (a+g)

If we know that m_{B} = 2\,kg, g = 9.807\,\frac{m}{s^{2}} and a = 4.203\,\frac{m}{s^{2}}, then the tension force in the cord:

T = (2\,kg)\cdot \left(4.203\,\frac{m}{s^{2}}+9.807\,\frac{m}{s^{2}}  \right)

T = 28.02\,N

The tension force in the cord is 28.02 newtons.

d) Given that system starts from rest and net acceleration is constant, we determine the time taken by the block to cover a distance of 1.5 meters through the following kinematic formula:

\Delta y  = \frac{1}{2}\cdot a\cdot t^{2} (3)

Where:

a - Net acceleration, measured in meters per square second.

t - Time, measured in seconds.

\Delta y - Covered distance, measured in meters.

If we know that a = 4.203\,\frac{m}{s^{2}} and \Delta y = 1.5\,m, then the time taken by the system is:

t = \sqrt{\frac{2\cdot \Delta y}{a} }

t = \sqrt{\frac{2\cdot (1.5\,m)}{4.203\,\frac{m}{s^{2}} } }

t \approx 0.845\,s

The system will take approximately 0.845 seconds to cover a distance of 1.5 meters.

e) The final speed of the system is calculated by the following formula:

v = a\cdot t (4)

Where v is the final speed of the system, measured in meters per second.

If we know that a = 4.203\,\frac{m}{s^{2}} and t \approx 0.845\,s, then the final speed of the system is:

v = \left(4.203\,\frac{m}{s^{2}} \right)\cdot (0.845\,s)

v = 3.551\,\frac{m}{s}

The final speed of the system is 3.551 meters per second.

8 0
3 years ago
The top of lake is frozen as atmospheric temperature is -10 degree Celsius the temperature of the bottom of the lake is most lik
hjlf

4°Celcius Water is densest at 4°C

4 0
3 years ago
How do you determine the wattage capacity needed by a power supply?
Lady bird [3.3K]
We could use the formula for the Power supply in order to find the wattage capacity and it would be:

P = V²/R or P = V * I

Hope this helps!
6 0
3 years ago
Other questions:
  • Name the parts of an atom and how each is charged, either positive, negative or neutral or uncharged
    13·1 answer
  • One boat tows another boat by means of a tow line, which is under a constant tension of 465 N. The boats move at a constant spee
    6·1 answer
  • Why isn't pluto considered a planet anymore?
    6·1 answer
  • A projectile is launched at an angel into the air its verticle acceleration is g?
    10·1 answer
  • A deer walking at 3.29 m/s speeds up to 13.38 m/s, covering a distance of 63.5 meters during this acceleration. How much time di
    6·1 answer
  • At what temperature do the fahrenheit and celsius scales give the same reading?
    6·1 answer
  • What is the mass of a basketball that has Connecticut energy of 102 J and it's travelling at 5 m/s
    14·1 answer
  • Use the vocabulary in the Word Bank to complete the following explanation.
    12·1 answer
  • If you use the same force to push a motorcycle as you would push a bike which one would have more acceleration and why explain u
    12·2 answers
  • When a force is applied to a wheel, its axle exerts a greater force?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!