Are both intertwined. exercise and you will feel brand new!!!
A. an accelerating charged charged particle or changing magnetic fields
The fraction of the water must evaporate to remove precisely enough energy to keep the temperature constant when water at 37°c has a latent heat of vaporization of lv = 580 kcal/kg is 2.58 times 10 to the minus 3.
Vaporization is the process by which a substance is transformed from its liquid or solid state into its gaseous (vapour) state. Boiling is the term for the vaporization process when conditions permit the creation of vapour bubbles within a liquid. Sublimation is the process of directly converting a solid to a liquid.
Boiling and evaporation are the two processes that cause vaporization. Evaporation is the process by which a liquid body's surface changes from a liquid to a gas, as in the case of a drop of water on hot concrete evaporating into a gas. A liquid is said to be boiling when it is heated to the point at which it begins to give off steam, as when you boil water on a stove. The process of converting a substance from its liquid or solid state into its gaseous (vapour) state is known as vaporization.
To learn more about vaporization please visit - brainly.com/question/12625048
#SPJ4
As we know that two charges exert force on each other when they are placed near to each other
The force between two charges is given as
here we know that
= two different point charges
r = distance between two point charges
also we know that two similar charges always repel each other while two opposite charges always attract each other
so here correct answer would be
<em>A. A positive and negative charge attract each other.</em>
Answer:
Impulse = 322.5[kg*m/s], the answer is D
Explanation:
This method it is based on the principle of momentum and the amount of movement; and used to solve problems involving strength, mass, speed and time.
If units of the SI are used, the magnitude of the impulse of a force is expressed in N * s. however, when remembering the definition of the newton.
Now replacing the values on the following equation that express the definition of impulse