1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sergey [27]
2 years ago
6

One type of cold remedy is an effervescent tablet that breaks down in water. When the tablet is placed in water, it forms gas bu

bbles. In this example, the formation of a gas
A is a physical property.
B occurs when adding water to acid.
Cis a sign of a chemical change.
D occurs when the water boils.
Physics
2 answers:
oksano4ka [1.4K]2 years ago
7 0

Answer:

is a sign of a chemical change

Explanation:

The tablet reacts with the water to form carbon dioxide

wariber [46]2 years ago
6 0
I think it’s C is a sign of a chemical change.
You might be interested in
A submarine travels 25 km/h north for 3.2 hours. What is its displacement?
Vika [28.1K]

displ = velocity x time

25 x 3.2 = 75+5 km north.

7 0
2 years ago
Read 2 more answers
A red laser with a wavelength of 670 nm and a blue laser with a wavelength of 450 nm emit laser beams with the same light power.
tatyana61 [14]

E=hf C=wavelength*F

E=hC/wavelength

E=(6.626*10^-34)*(3.00*10^8)/670*10^-9

E=(6.626*10^-34)*(3.00*10^8)/450*10^-9

6 0
3 years ago
During the middle of a family picnic, Barry Allen received a message that his friends Bruce and Hal
weeeeeb [17]

The kinematics of the uniform motion and the addition of vectors allow finding the results are:

  • The  Barry's initial trajectory is 94.30 10³ m with n angles of θ = 138.8º
  • The return trajectory and speed are v = 785.9 m / s, with an angle of 41.2º to the South of the East

Vectors are quantities that have modulus and direction, so they must be added using vector algebra.

A simple method to perform this addition in the algebraic method which has several parts:

  • Vectors are decomposed into a coordinate system
  • The components are added
  • The resulting vector is constructed

 Indicate that Barry's velocity is constant, let's find using the uniform motion thatthe distance traveled in ad case

              v = \frac{\Delta d}{t}

              Δd = v t

Where  v is the average velocity, Δd the displacement and t the time

We look for the first distance traveled at speed v₁ = 600 m / s for a time

          t₁ = 2 min = 120 s

          Δd₁ = v₁ t₁

          Δd₁ = 600 120

          Δd₁ = 72 10³ m

Now we look for the second distance traveled for the velocity v₂ = 400 m/s    

  time t₂ = 1 min = 60 s

          Δd₂ = v₂ t₂

          Δd₂ = 400 60

          Δd₂ = 24 103 m

   

In the attached we can see a diagram of the different Barry trajectories and the coordinate system for the decomposition,

We must be careful all the angles must be measured counterclockwise from the positive side of the axis ax (East)

Let's use trigonometry for each distance

Route 1

          cos (180 -35) = \frac{x_1}{\Delta d_1}

          sin 145 = \frac{y_1}{\Delta d1}

          x₁ = Δd₁ cos 125

          y₁ = Δd₁ sin 125

          x₁ = 72 103 are 145 = -58.98 103 m

          y₁ = 72 103 sin 155 = 41.30 10³ m

Route 2

          cos (90+ 30) = \frac{x_2}{\Delta d_2}

          sin (120) = \frac{y_2}{\Delta d_2}

          x₂ = Δd₂ cos 120

          y₂ = Δd₂ sin 120

          x₂ = 24 103 cos 120 = -12 10³ m

           y₂ = 24 103 sin 120 = 20,78 10³ m

             

The component of the resultant vector are

              Rₓ = x₁ + x₂

              R_y = y₁ + y₂

              Rx = - (58.98 + 12) 10³ = -70.98 10³ m

              Ry = (41.30 + 20.78) 10³ m = 62.08 10³ m

We construct the resulting vector

Let's use the Pythagoras' Theorem for the module

             R = \sqrt{R_x^2 +R_y^2}

             R = \sqrt{70.98^2 + 62.08^2}   10³

             R = 94.30 10³ m

We use trigonometry for the angle

             tan θ ’= \frac{R_y}{R_x}

             θ '= tan⁻¹ \frac{R_y}{R_x}

             θ '= tan⁻¹ \frac{62.08}{70.98}

             θ ’= 41.2º

Since the offset in the x axis is negative and the displacement in the y axis is positive, this vector is in the second quadrant, to be written with respect to the positive side of the x axis in a counterclockwise direction

            θ = 180 - θ'

            θ = 180 -41.2

            θ = 138.8º

Finally, let's calculate the speed for the way back, since the total of the trajectory must be 5 min and on the outward trip I spend 3 min, for the return there is a time of t₃ = 2 min = 120 s.

The average speed of the trip should be

             v = \frac{\Delta R}{t_3}  

             v = \frac{94.30}{120}  \ 10^3

              v = 785.9 m / s

in the opposite direction, that is, the angle must be

               41.2º to the South of the East

In conclusion, using the kinematics of the uniform motion and the addition of vectors, results are:

  • To find the initial Barry trajectory is 94.30 10³ m with n angles of  138.8º
  • The return trajectory and speed is v = 785.9 m / s, with an angle of 41.2º to the South of the East

Learn more here:  brainly.com/question/15074838

4 0
2 years ago
The y-position of a damped oscillator as a function of time is shown in the figure.
NISA [10]

(1) The period of the oscillator is 1 second.

(2) The damping coefficient is 0.93.

<h3>What is period of oscillation?</h3>

The period of oscillation is the time taken to make one complete cycle.

From the graph, the time taken to make one complete oscillation is 1 second.

<h3>Damping coefficient</h3>

equation of the wave is given as;

y(t) = Ae^(-btx) cos(ωt)

<h3>at time, t = 0, y = 3.5</h3>

3.5 = Ae^(-0) cos(0)

3.5 = A x 1

A = 3.5 cm

<h3>at time, t = 1 cm, y = - 3cm</h3>

-3 = 3.5e^(-bx) cos(ω)

-3/3.5 = e^(-bx) cos(ω)

-0.857 = e^(-bx) cos(ω)

-0.857 / cos(ω) =  e^(-bx)

ln[-0.857 / cos(ω)] = -bx  

ln[-0.857 / cos(ω)] / b = - x  ---- (1)

<h3>at time, t = 2 cm, y = - 2cm</h3>

-2 = 3.5e^(-2bx) cos(2ω)

-0.57 = e^(-2bx) cos(2ω)

ln[-0.57 / cos(2ω)] = -2bx  

ln[-0.57 / cos(2ω)] /2b = - x  ------(2)

solve (1) and (2)

ln[-0.57 / cos(2ω)]/2b = ln[-0.857 / cos(ω)] /b

-0.57 / cos(ω) = 2(-0.857 / cos(ω))

2(-0.857/cosω) = -0.57/cos2ω

-(2 x 0.857) / (-0.57) = cosω/cos 2ω

3 = cosω/cos 2ω

3(cos 2ω) =  cosω

3(2cos²ω - 1) = cos ω

6cos²ω - 6 = cosω

6cos²ω  - cosω - 6 = 0

let cosω  = y

6y² - y - 6 = 0

solve the quadratic equation;

y = 1.1 or -0.92

cosω = -0.92

ω  = arc cos(-0.92)

ω  = 2.74 rad/s

From equation (1)

ln[-0.857 / cos(ω)] / x = -b  ---- (1)

let x = 1

ln(-0.857/cos(2.74) = -b

-0.93 = -b

b = 0.93

Thus, the damping coefficient is 0.93.

Learn more about damping coefficient here: brainly.com/question/14058210

#SPJ1

4 0
2 years ago
What causes the rider on a roller coaster to experience the + or - g’s if gravity always remains the same on earth
MA_775_DIABLO [31]

Answer:

Yes both = and - g can be felt by a rider in a roller coaster.

Explanation:

It is crucial to understand how we feel gravity in this case.

We humans have no sensory organs to directly detect magnitude and direction like some birds and other creatures, but then how do we we feel gravity?

When we stand on our feet we feel our weight due to the normal reaction of floor on our feet trying to keep us stand and our weight trying to crush us down. In an elevator we feel difference in our weight (difference magnitudes of gravity) but actually we are feeling the differences in normal reactions under different accelerations of the elevator.

In the case of roller coaster you will feel +g as you  sit on a chair in it, but will feel -g when you are in upside down position as roller coaster move.

When you are seated you will feel the normal reaction of seat on you giving you the feeling +g and the support of the buckles to stay in the roller coaster when you are upside down will give you the -g feeling.

<u>This is just the physics approach</u>, a biological approach can be given in association with sensors relating to ears.

8 0
3 years ago
Other questions:
  • Why is it important to practice a presentation?
    7·2 answers
  • Explain in detail what causes tides and give one reason why it is important for humans to monitor tides.
    6·2 answers
  • Which are two of Jupiter’s moons? Europa and Io Sirius and Polaris Galileo and Voyager Pluto and Neptune
    5·1 answer
  • Describe the differences between a plum pudding model and a nuclear model.
    12·1 answer
  • Fuel is combusted in the _____ stroke of a four-stroke engine.
    12·1 answer
  • A billiard ball is dropped from a height of 64 feet. Use the position function s(t) = –16???? 2 + ????0???? + ????0 to answer th
    6·1 answer
  • What is the magnitude (in N/C) and direction of an electric field that exerts a 3.50 ✕ 10−5 N upward force on a −1.55 µC charge?
    15·1 answer
  • For work to be accomplished we much have
    10·2 answers
  • Need some help please answer please
    11·1 answer
  • The graph shows the heating curve of water the X axis shows heat added overtime and Y axis shows the temperature identify the re
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!