To find the accurate measurement of small cars, the teacher asks students to make all the measurements in centimeters.
Centimeters Measurements:
- A centimeter is a metric unit of measurement used for measuring the length of an object, It is written as cm
- Centimeter is one hundredth of a meter, 1 meter is 0.01 cm.
Inches measurements:
- An inch can be defined as a unit of length in the customary system of measurement. Length in inches is either represented by in or ''.
- 1 meter is equal to 39.37 inches
here, the cars are small objects.
The number of centimeters is always bigger,
because a centimeter unit is smaller than an inch unit, and it takes more of them when we are measuring.
Hence,
To find the accurate measurement of small cars, the teacher asks students to make all the measurements in centimeters.
Learn more about accurate measurement here:
<u>brainly.com/question/4119127</u>
<u />
#SPJ4
-- The table tennis ball bounces back with virtually its entire original speed.
-- The bowling ball rolls forward, so slowly that only complex expensive laboratory equipment can detect and measure its speed.
-- Once again, momentum is conserved !
Answer:
a)F=3 x 10⁻⁷ N
b)x=2.405 m
Explanation:
Given that
m₁=295 kg
m₂=595 kg
d= 4.1 m
a)
m₃=63 kg
r=d/2 = 2.05 m
The force between the mass m₁ and m₃

by putting the values


F₁₃=2.94 x 10⁻⁷ N
The force between the mass m₂ and m₃
by putting the values


F₂₃=5.94 x 10⁻⁷ N
The net force F
F= F₂₃- F₁₃
F=5.94 x 10⁻⁷ N-2.94 x 10⁻⁷ N
F=3 x 10⁻⁷ N
b)
Lest take at distance x from mass m₂ net force is zero.


Form above two equation



x²=2.01(4.1-x)²
x=1.42 (4.1-x)
x=5.82 - 1.42x
x=2.405 m
Answer:
El módulo del torque aplicado es 36 Nm
Explanation:
En los movimientos rotatorios, la cantidad de fuerza aplicada no depende de la acción gravitacional sino del momento inercial, que es el equivalente angular de la inercia (masa) y representa la resistencia que un objeto ofrece al rotar alrededor de su eje. Cuando un cuerpo rígido rota alrededor de su eje debe considerarse , además de la masa, el radio de giro ya que estos dos factores determinan la resistencia del cuerpo a los cambios de movimiento rotatorio a través de un eje determinado.
De esta manera, se llama torque o momento de una fuerza a la capacidad de dicha fuerza para producir un giro o rotación alrededor de un punto.
En muchas ocasiones el punto de aplicación de la fuerza no coincide con el punto de aplicación en el cuerpo. En este caso la fuerza actúa sobre el objeto y su estructura a cierta distancia, mediante un elemento que traslada esa acción de esta fuerza hasta el objeto. Entonces, el momento de una fuerza es, matemáticamente, igual al producto de la intensidad de la fuerza (módulo) por la distancia desde el punto de aplicación de la fuerza hasta el eje de giro:
M=F*d*sen θ
donde F es la fuerza en Newton (N), d la distancia en metros (m), θ el ángulo que forma la fuerza con el objeto al cual se le aplica la fuerza y M el momento, que se mide en Newton por metro (Nm).
En este caso:
- F= 40 N
- d= 90 cm= 0.9 m (siendo 100 cm= 1 m)
- θ= 90° ya que la fuerza se aplica de forma perpendicular. Entonces sen θ= sen 90= 1
Reemplazando:
M=40 N*0.9 m* 1
Resolviendo:
M= 36 Nm
<u><em>El módulo del torque aplicado es 36 Nm</em></u>
No, that's false. 'Zero' on the Celsius scale
is 273 on the absolute scale.