Newton's first law states that every object will remain at rest or in uniform motion in a straight line unless compelled to change its state by the action of an external force.
Latitude, elevation, ocean currents, topography, and prevailing winds. There's probably a few others but these are the most important.
It depends on "Potential Energy", the amount energy it could have, the amount depending on certain circumstances, like height or force. This was how traditional and some modern rollercoasters work. As the "conveyer belt" pulls you up, the higher you go, the more potential energy you have. Once you are falling down the hill, you are experiencing "Kinetic Energy". Hope it makes sence.
Answer:
0.08 ft/min
Explanation:
To get the speed at witch the water raising at a given point we need to know the area it needs to fill at that point in the trough (the longitudinal section), which is given by the height at that point.
So we need to get the lenght of the sides for a height of 1 foot. Given the geometry of the trough, one side is the depth <em>d</em> and the other (lets call it <em>l</em>) is given by:

since the difference between the upper and lower base is the increase in the base and we are only at halft the height.
Now we can calculate the longitudinal section <em>A</em> at that point:

And the raising speed <em>v </em>of the water is given by:

where <em>q</em> is the water flow (1 cubic foot per minute).
Dispersion occurs due to the different degrees of refraction experienced by different colours of light. Light of different colours may travel with the same speed in a vacuum, but they travel at different speeds in some refracting medium. The speed of violet light is relatively lower than that of red light.