Answer:
x = 0.775m
Explanation:
Conceptual analysis
In the attached figure we see the locations of the charges. We place the charge q₃ at a distance x from the origin. The forces F₂₃ and F₁₃ are attractive forces because the charges have an opposite sign, and these forces must be equal so that the net force on the charge q₃ is zero.
We apply Coulomb's law to calculate the electrical forces on q₃:
(Electric force of q₂ over q₃)
(Electric force of q₁ over q₃)
Known data
q₁ = 15 μC = 15*10⁻⁶ C
q₂ = 6 μC = 6*10⁻⁶ C
Problem development
F₂₃ = F₁₃
(We cancel k and q₃)

q₂(2-x)² = q₁x²
6×10⁻⁶(2-x)² = 15×10⁻⁶(x)² (We cancel 10⁻⁶)
6(2-x)² = 15(x)²
6(4-4x+x²) = 15x²
24 - 24x + 6x² = 15x²
9x² + 24x - 24 = 0
The solution of the quadratic equation is:
x₁ = 0.775m
x₂ = -3.44m
x₁ meets the conditions for the forces to cancel in q₃
x₂ does not meet the conditions because the forces would remain in the same direction and would not cancel
The negative charge q₃ must be placed on x = 0.775 so that the net force is equal to zero.
F = ma
We have mass = 0.2kg
and acceleration = 20 m/s^2
So..
F = (0.2)(20)
F = 4 N
In order to have a period that matches the Earth's rotation, a satellite must be in a circular orbit, and 42,164 km from the center of the Earth.
But that's not quite enough to make sure that it always stays over the same point on the Earth's surface (and appears motionless in the sky). For that to happen, the satellite's orbit has to be directly over the Equator.
The Moon has nothing to do with any of this.
The answer is B) evaporation,condensation, precipitation, runoff/storage
<h3><u>Answer;</u></h3>
C) Covalent bonds are generally weaker than ionic bonds because they overlap electrons to fill their outer shell.
<h3><u>Explanation;</u></h3>
- <em><u>Covalent bond is a type of bond that results from the sharing of electrons between two non-metal atoms. </u></em>
- <em><u>Ionic bond on the other is a type of bond that results from the transfer of electrons between metal atoms and non metal atoms, where a metal atom looses electrons and a non-metal atom gains electrons.</u></em>
- <em><u>The amount of energy required to break an given bond determines how strong a particular bond is.</u></em> Ionic bonds require more energy to break as compared to covalent bond and therefore they are stronger than the covalent bonds.