The Bohr atomic model, relying on quantum mechanics, built upon the Rutherford model to explain the orbits of electrons.
Answer:
S/.486 es el valor del anillo
Explanation:
Para hallar el precio del anillo se deben encontrar las moles de oro que contiene este.
Si el anillo es de 90g y solo el 59.1% contiene oro, la cantidad de oro en gramos es:
90g × 59.1% = 53.19g Oro en el anillo
Ahora, para convertir los gramos de oro a moles se debe usar la masa atómica del oro (197g/mol), así:
53.19g × (1mol / 197g) = <em><u>0.27 moles de oro contiene el anillo</u></em>.
Ya que cada mol de oro cuesta S/.1800, 0.27 moles de oro (Y por lo tanto, el anillo) costarán:
0.27mol × (S/.1800 / 1mol oro) =
<h3>S/.486 es el valor del anillo</h3>
<span>11.3 kPa
The ideal gas law is
PV = nRT
where
P = Pressure
V = Volume
n = number of moles
R = Ideal gas constant (8.3144598 L*kPa/(K*mol) )
T = Absolute temperature
We have everything except moles and volume. But we can calculate moles by starting with the atomic weight of argon and neon.
Atomic weight argon = 39.948
Atomic weight neon = 20.1797
Moles Ar = 1.00 g / 39.948 g/mol = 0.025032542 mol
Moles Ne = 0.500 g / 20.1797 g/mol = 0.024777375 mol
Total moles gas particles = 0.025032542 mol + 0.024777375 mol = 0.049809918 mol
Now take the ideal gas equation and solve for P, then substitute known values and solve.
PV = nRT
P = nRT/V
P = 0.049809918 mol * 8.3144598 L*kPa/(K*mol) * 275 K/5.00 L
P = 113.8892033 L*kPa / 5.00 L
P = 22.77784066 kPa
Now let's determine the percent of pressure provided by neon by calculating the percentage of neon atoms. Divide the number of moles of neon by the total number of moles.
0.024777375 mol / 0.049809918 mol = 0.497438592
Now multiply by the pressure
0.497438592 * 22.77784066 kPa = 11.33057699 kPa
Round the result to 3 significant figures, giving 11.3 kPa</span>
The Law of Conservation of Mass<span> states that </span>matter <span>can neither be created nor destroyed in a chemical reaction.</span>
Answer: -227 kJ
Explanation:
The balanced chemical reaction is,

The expression for enthalpy change is,
![\Delta H=\sum [n\times \Delta H_f(product)]-\sum [n\times \Delta H_f(reactant)]](https://tex.z-dn.net/?f=%5CDelta%20H%3D%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H_f%28product%29%5D-%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H_f%28reactant%29%5D)
![\Delta H=[(n_{CO_2}\times \Delta H_{CO_2})+ n_{H_2O}\times \Delta H_{H_2O})]-[(n_{C_2H_2}\times \Delta H_{C_2H_2})+(n_{O_2}\times \Delta H_{O_2})]](https://tex.z-dn.net/?f=%5CDelta%20H%3D%5B%28n_%7BCO_2%7D%5Ctimes%20%5CDelta%20H_%7BCO_2%7D%29%2B%20n_%7BH_2O%7D%5Ctimes%20%5CDelta%20H_%7BH_2O%7D%29%5D-%5B%28n_%7BC_2H_2%7D%5Ctimes%20%5CDelta%20H_%7BC_2H_2%7D%29%2B%28n_%7BO_2%7D%5Ctimes%20%5CDelta%20H_%7BO_2%7D%29%5D)
where,
n = number of moles
(as heat of formation of substances in their standard state is zero
Now put all the given values in this expression, we get
![-1255.8=[(2\times -393.5)+(1\times -241.8)]-[(1\times \Delta H_{C_2H_2})+(\frac{5}{2}\times 0)]](https://tex.z-dn.net/?f=-1255.8%3D%5B%282%5Ctimes%20-393.5%29%2B%281%5Ctimes%20-241.8%29%5D-%5B%281%5Ctimes%20%5CDelta%20H_%7BC_2H_2%7D%29%2B%28%5Cfrac%7B5%7D%7B2%7D%5Ctimes%200%29%5D)
![-1255.8=[(-787)+(-241.8)]-[(1\times \Delta H_{C_2H_2})+(0)]](https://tex.z-dn.net/?f=-1255.8%3D%5B%28-787%29%2B%28-241.8%29%5D-%5B%281%5Ctimes%20%5CDelta%20H_%7BC_2H_2%7D%29%2B%280%29%5D)

Therefore, the enthalpy change for
is -227 kJ.