Answer:
Hi, a cheerful teen willing to help,
wishing you a splendiferous day ahead...
Explanation:
1ai. The most dense is Tungsten.
1aii. The least dense is Sodium.
1aiii. The strongest is Tungsten.
1b. All metals conduct electricity.
They are all magnetic except magnetic.
and all solid at room temperature except mercury.
1c. Mercury is a liquid at room temperature.
1d. Tungsten is used as filament for light bulbs due to its high melting point and it doesn't oxidize, this the filament won't melt.
1e. The lump of gold will sink because it is more dense than mercury.
Answer:
60.9 Kelvin
Explanation: First, write out everything that you know. You are tring to find the temperature, so the temperature will be represented by x.
Pressure (P)= 4.5 atm
Volume (V)= 3L
Number of Moles (n)= ?
Gas Consant (R)= 0.0821, if the pressure is in atm, that means r is 0.0821
Temperature (T)= x
We don't have all the information we need to plug the values into the equation. We still need to know how many moles 55.0 grans of neon is.
Ne in Grams= 55
Atomic Mass of Ne= 20.1797
55/20.1797= 2.7
moles= 2.7
Now that we have all the information we need, plug everying into the equation. In case you don't know, the Ideal Gas Law Equation is PV= nRT.
(4.5)(3) = (2.7)(0.821)x
x= 60.9
Now you have your temperature! It is 60.9 in Kelvin.
Answer:
0.133 mol (corrected to 3 sig.fig)
Explanation:
Take the atomic mass of H=1.0, and O=16.0,
no. of moles = mass / molar mass
so no. of moles of H2O produced = 1.2 / (1.0x2+16.0)
= 0.0666666 mol
From the equation, the mole ratio of H2:H2O = 2:2 = 1:1,
meaning every 1 mole of H2 reacted gives out 1 mole of water.
So, the no, of moles of H2 required should equal to the no, of moles of H2O produced, which is also 0.0666666 moles.
mass = no. of moles x molar mass
hence,
mass of H2 required = 0.066666666 x (1.0x2)
= 0.133 mol (corrected to 3 sig.fig)
Answer is 38/3 or 12.67
3x=38
x=38/3
therefore answer is the one mentioned above