Answer:
The answer is <em>e.2</em>
Explanation:
We should make use of Snell's refractive law. The arriving wave has a certain velocity at T in a medium, then instantly it reaches a medium (same composition) at T' where velocity would either decrease or increase.
When the incidence angle is 30 °, and we want to make the refraction angle 90 ° such that no sound passes through the barrier (this would be named total internal refraction), so we want the second medium to be "faster" than in the first.
<em>The steps are in the image attached:</em>
Answer:
Yep.. It's balanced and its a combination reaction
Explanation:
Reactants : S₈ + 24F₂
Product 8SF₆
Answer: This is called the Doppler effect, where waves shift frequency and wavelength as the source travels towards you (higher frequency, shorter wavelength) or away from you (lower frequency, longer wavelength)
Explanation:
hoped this helped have a good day :)
Answer:
Most of the stars occupy the region in the diagram along the line called the main sequence. During the stage of their lives in which stars are found on the main sequence line, they are fusing hydrogen in their cores.
Friction occurs between two contacting surfaces. The coefficient of friction is very much dependent on the roughness of these surfaces. Some of the many ways in which the coefficient can be lessened or decreased are to lubricate the surface or make it shiny by eliminating the spikes which caused the roughness.