A circle has a revolution of 360°. Since there are 12 hour markings, each hour interval has an angle of 30°. In radians, that would be equal to π/6 radians. So, in every 1 hour that passes, it covers π/6 of an angle. So, the angular velocity denoted as ω is π/6 ÷ 1 hour = π/6 rad/h. We can compute the average linear velocity, v, from the relationship:
v = rω, where r is the radius of the circle which is the length of the hour hand
v = (2.4 cm)(π/6 rad/h)
v = 1.257 cm/hour
Therefore, the average velocity is 1.257 cm per hour.
For the average acceleration, it is equal to zero. The hands of the clock move at a constant velocity. Since acceleration is the change of velocity per unit time, there is no change of velocity because it's constant. That's why it is zero.
Let us first know the given: Tennis ball has a mass of 0.003 kg, Soccer ball has a mass of 0.43 kg. Having the same velocity at 16 m/s. First the equation for momentum is P=MV P=Momentum M=Mass V=Velocity. Now let us have the solution for the momentum of tennis ball. Pt=0.003 x 16 m/s= ( kg-m/s ) I use the subscript "t" for tennis. Momentum of Soccer ball Ps= 0.43 x 13m/s = ( km-m/s). If we going to compare the momentum of both balls, the heavier object will surely have a greater momentum because it has a larger mass, unless otherwise the tennis ball with a lesser mass will have a greater velocity to be equal or greater than the momentum of a soccer ball.
The acceleration is 3.3 m/s2
Answer:
1 Ampere.
Explanation:
From the question given above, the following data were obtained:
Resistor 1 (R₁) = 20 ohm
Resistor (R₂) = 20 ohm
Voltage (V) = 10 V
Current (I) =?
Next, we shall determine the equivalent resistance in the circuit. This can be obtained as follow:
Resistor 1 (R₁) = 20 ohm
Resistor (R₂) = 20 ohm
Equivalent Resistance (R) =?
Since the resistors are in parallel connection, the equivalent resistance can be obtained as follow:
R = (R₁ × R₂) / (R₁ + R₂)
R = (20 × 20) / (20 + 20)
R = 400 / 40
R = 10 ohm
Finally, we shall determine the total current in the circuit. This can be obtained as illustrated below:
Voltage (V) = 10 V
Equivalent Resistance (R) = 10 ohm
Current (I) =?
V = IR
10 = I × 10
Divide both side by 10
I = 10 / 10
I = 1 Ampere
Therefore, the total current in the circuit is 1 Ampere.