Answer:
The answer to your question is: Initial temperature of copper = 67.1°C
Explanation:
Data
mass Copper = 248 g
volume Water = 390 ml
T1 water = 22.6°C
T2 = 39.9°C
T1 copper = ?
Specific heat water = 1 cal/g°C
Specific heat copper = 0.092 cal/g°C
Formula copper water
Heat is negative for copper because it releases heat
- mCp(T2 - T1) = mCp(T2 - T1)
- (248)(39.9 - T1) = 390 (1)((39.9 - 22.6) Substitution
-9895.2 + 248T1 = 390(17.3) Simplification
-9895.2 + 248T1 = 6747
248 T1 = 6747 + 9895.2
248 T1 = 16642.2
T1 = 16642.2 / 248
T1 = 67.1 °C Result
A unit of mass used to express atomic and molecular weights, equal to one-twelfth of the mass of an atom of carbon-12. It is equal to approximately 1.66 x 10-27<span> kg.</span>
Answer:
0.17 moles
Explanation:
In the elements of the periodic table, the atomic mass = molar mass. <u>Ex:</u> Atomic mass of Carbon is 12.01 amu which means molar mass of Carbon is also 12.01g/mol.
In order to find the # of moles in a 12 g sample of NiC-12, we will need to multiply the number of each atom by its molar mass and then add the masses of both Nickel and C-12 found in the periodic table:
- Molar Mass of Ni (Nickel): 58.69 g/mol
- Molar Mass of C (Carbon): 12.01 g/mol
Since there's just one atom of both Carbon and Nickel, we just add up the masses to find the molar mass of the whole compound of NiC-12.
- 58.69 g/mol of Nickel + 12.01 g/mol of Carbon = 70.7 g/mol of NiC-12
There's 12g of NiC-12, which is less than the molar mass of NiC-12, so the number of moles should be less than 1. In order to find the # of moles in NiC-12, we need to do some dimensional analysis:
- 12g NiC-12 (1 mol of NiC-12/70.7g NiC-12) = 0.17 mol of NiC-12
- The grams cancel, leaving us with moles of NiC-12, so the answer is 0.17 moles of NiC-12 in a 12 g sample.
<em>P.S. C-12 or C12 just means that the Carbon atom has an atomic mass of 12amu and a molar mass of 12g/mol, or just regular carbon.</em>
117 L. You can start by making a table to organize the information you are given. Then, you can use the formula PV/T=PV/T and plug in the numbers you have. You then solve for the missing volume. Remember that the initial pressure, temperature, and volume should be on one side of the equal sign, and the final pressure, volume, and temperature should be on the other side.
Answer:
u will equate and make V2 the subject because it's the one u are looking for ....