Answer:
1, 2, and 3 are true.
Explanation:
The Henderson-Hasselbalch equation is:
pH = pka + log₁₀ ![\frac{[A^-]}{[HA]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BA%5E-%5D%7D%7B%5BHA%5D%7D)
- If the pH of the solution is known as is the pKa for the acid, the ratio of conjugate base to acid can be determined. <em>TRUE</em>
pH = pka + log₁₀ ![\frac{[A^-]}{[HA]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BA%5E-%5D%7D%7B%5BHA%5D%7D)
If you know pH and pka:
10^(pH-pka) = ![\frac{[A^-]}{[HA]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BA%5E-%5D%7D%7B%5BHA%5D%7D)
The ratio will be: 10^(pH-pka)
- At pH = pKa for an acid, [conjugate base] = [acid] in solution. <em>TRUE</em>
pH = pka + log₁₀ ![\frac{[A^-]}{[HA]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BA%5E-%5D%7D%7B%5BHA%5D%7D)
0 = log₁₀ ![\frac{[A^-]}{[HA]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BA%5E-%5D%7D%7B%5BHA%5D%7D)
10^0 = ![\frac{[A^-]}{[HA]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BA%5E-%5D%7D%7B%5BHA%5D%7D)
1 = ![\frac{[A^-]}{[HA]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BA%5E-%5D%7D%7B%5BHA%5D%7D)
As ratio is 1, [conjugate base] = [acid] in solution.
- At pH >> pKa for an acid, the acid will be mostly ionized. <em>TRUE</em>
pH = pka + log₁₀ ![\frac{[A^-]}{[HA]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BA%5E-%5D%7D%7B%5BHA%5D%7D)
If pH >> pKa, 10^(pH-pka) will be >> 1, that means that you have more [A⁻] than [HA]
- At pH << pKa for an acid, the acid will be mostly ionized. <em>FALSE</em>
pH = pka + log₁₀ ![\frac{[A^-]}{[HA]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BA%5E-%5D%7D%7B%5BHA%5D%7D)
If pH << pKa, 10^(pH-pka) will be << 1, that means that you have more [HA] than [A⁻]
I hope it helps!
Answer:
Explanation:
Data:
H₃O⁺ + OH⁻ ⟶ 2H₂O
V/mL: 50.0 50.0
c/mol·L⁻¹: 1.0 1.0
ΔT = 6.5 °C
ρ = 1.210 g/mL
C = 4.18 J·°C⁻¹g⁻¹
C_cal = 12.0 J·°C⁻¹
Calculations:
(a) Moles of acid

(b) Volume of solution
V = 50.0 mL + 50.0 mL = 100.0 mL
(c) Mass of solution

(d) Calorimetry
There are three energy flows in this reaction.
q₁ = heat from reaction
q₂ = heat to warm the water
q₃ = heat to warm the calorimeter
q₁ + q₂ + q₃ = 0
nΔH + mCΔT + C_calΔT = 0
0.0500ΔH + 1.10×4.18×6.5 + 12.0×6.5 = 0
0.0500ΔH + 2989 + 78.0 = 0
0.0500ΔH + 3067 = 0
0.0500ΔH = -3067
ΔH = -3067/0.0500
= -61 000 J/mol
= -61 kJ/mol

Note: The answer can have only two significant figures because that is all you gave for the change in temperature.
Answer:
The water ligands surrounding the cobalt metal center are being replaced by ethylenediamine and chloride ligands which results in a different crystal field splitting. Thus, the energy associated with electron transitions between the do-orbitals will differ for the two compounds showing a color change.
Explanation:
The five d-orbitals are usually degenerate. Upon approach of a ligand, the d-orbitals split into two sets of orbitals depending in the nature of the crystal field.
The magnitude of crystal field splitting is affected by the nature of the ligand. Ligands having filled p-π orbitals such as ethylenediamine lead to greater crystal field splitting.
The change in the colour that takes place when ethylenediamine is added to the solution of cobalt(II) chloride occurs due to a different crystal field splitting pattern. Thus, the energy associated with electron transitions between the d-orbitals now differ for the two compounds showing a color change.
Answer:
Scale Factor: 1 : 2
X = 11
Explanation:
3 / 3 = 1
6 / 3 = 2
The scale factor should be 1:2
So 'X' should be 11 since 5.5 * 2 = 11