Answer:
1.12g/mol
Explanation:
The freezing point depression of a solvent for the addition of a solute follows the equation:
ΔT = Kf*m*i
<em>Where ΔT is change in temperature (Benzonitrile freezing point: -12.82°C; Freezing point solution: 13.4°C)</em>
<em>ΔT = 13.4°C - (-12.82) = 26.22°C</em>
<em>m is molality of the solution</em>
<em>Kf is freezing point depression constant of benzonitrile (5.35°Ckgmol⁻¹)</em>
<em>And i is Van't Hoff factor (1 for all solutes in benzonitrile)</em>
Replacing:
26.22°C = 5.35°Ckgmol⁻¹*m*1
4.90mol/kg = molality of the compound X
As the mass of the solvent is 100g = 0.100kg:
4.9mol/kg * 0.100kg = 0.490moles
There are 0.490 moles of X in 551mg = 0.551g, the molar mass (Ratio of grams and moles) is:
0.551g / 0.490mol
= 1.12g/mol
<em>This result has no sense but is the result by using the freezing point of the solution = 13.4°C. Has more sense a value of -13.4°C.</em>
The correct answer is option c, that is, nucleus.
A usual atom comprises three subatomic particles, that is, the neutrons, protons, and electrons. According to Bohr's model, the majority of the mass of an atom is in the nucleus, that is, a small, dense region at the center of each atom, comprising nucleons.
The nucleons incorporate neutrons and protons. All the positive charge of an atom is found in the nucleus and arises from the protons, the neutrons are neutrally-charged, and the electrons are the negatively charged particles found outside of the nucleus.
Answer:
The main use for hydrogen sulfide is in the production of sulfuric acid and elemental sulfur. ... H2S is used to prepare the inorganic sulfides you need to make those products. As a reagent and intermediate, hydrogen sulfide is beneficial because it can prepare other types of reduced sulfur compounds.