Answer:
Hello friends
Explanation:
<h3>For a given principal quantum number for or n, the corresponding angular quantum number or is equivalent to a range between 0 and( n-1)</h3>
<h3>This means that the angular quantum number for a principal quantum number of 2 is equivalent to.</h3>
<h3>1 = 0 - > (n - 1) = 0 - > (2 - 1) = 0 - > 1</h3>
<h3>Hope it's helpfully. </h3>
Answer:
youre gonna have to include the answers for me to help
Explanation:
If you notice in the graph for antibiotic A, the number of bacteria actually INCREASES as time increases after the antibiotic was given. In the second graph, the amount of bacteria increases just a little bit (likely as the antibiotic sets in) and then decreases until no bacteria is left at all. This means that the antibiotic was the most successful because not only did the amount of bacteria decrease over time, but also all of the bacteria were eventually killed.
The last graph is shown as no antibiotic given. This is a graph showing the control group. There is always a control group in an experiment where nothing is done to the group. This is used to compare the results in the end of the experiment.
Answer:
Differences between Orbit and Orbitals
Orbit
An orbit is the simple planar representation of an electron.
It can be simply defined as the path that gets established in a circular motion by revolving the electron around the nucleus
The shape of molecules cannot be explained by an orbit as they are non-directional by nature.
An orbit that is well-defined goes against the Heisenberg principle.
Orbital
An orbital refers to the dimensional motion of an electron around the nucleus in a three-dimensional motion.
An orbital can simply be defined as the space or the region where the electron is likely to be found the most.
The shapes of the molecules can be found out as they are directional by nature.
An ideal orbital agrees with the theory of Heisenberg’s Principles.
60 i believe i haven't did science in a while sorry if im wrong though... ._.