Answer is: 4)Mass
I really hope this helped you out!!!!
Answer:
Q14: 17,140 g = 17.14 kg.
Q16: 504 J.
Explanation:
<u><em>Q14:</em></u>
- To solve this problem, we can use the relation:
<em>Q = m.c.ΔT,</em>
where, Q is the amount of heat absorbed by ice (Q = 3600 x 10³ J).
m is the mass of the ice (m = ??? g).
c is the specific heat of the ice (c of ice = 2.1 J/g.°C).
ΔT is the difference between the initial and final temperature (ΔT = final T - initial T = 100.0°C - 0.0°C = 100.0°C).
∵ Q = m.c.ΔT
∴ (3600 x 10³ J) = m.(2.1 J/g.°C).(100.0°C)
∴ m = (3600 x 10³ J)/(2.1 J/g.°C).(100.0°C) = 17,140 g = 17.14 kg.
<u><em>Q16:</em></u>
- To solve this problem, we can use the relation:
<em>Q = m.c.ΔT,</em>
where, Q is the amount of heat absorbed by ice (Q = ??? J).
m is the mass of the ice (m = 12.0 g).
c is the specific heat of the ice (c of ice = 2.1 J/g.°C).
ΔT is the difference between the initial and final temperature (ΔT = final T - initial T = 0.0°C - (-20.0°C) = 20.0°C).
∴ Q = m.c.ΔT = (12.0 g)(2.1 J/g.°C)(20.0°C) = 504 J.
The correct answer is (3)
I-131 and P-32
The explanation:
according to attached table:
- we can see that the half life of p 32 is 14.28d (more than one hour)
- and the half life of I-131 is 8.021 d
(more than one hour)
and They both have β- decay mode and with half-lives greater than hour.
1 ba+2 br——>1 babr2
u just have to make sure u have the same number of each type of atom on either side of the equation:)
Answer:
[CaCl₂·2H₂O] = 1.43 m
Explanation:
Molality is mol of solute / kg of solvent.
Mass of solvent = 40 g
Let's convert g to kg → 40 g / 1000 = 0.04 kg
Let's determine the moles of solute (mass / molar mass)
8.43 g / 146.98 g/mol = 0.057 mol
Molality = 0.057 mol / 0.04 kg → 1.43