Answer:
1.1 liters
1.2 liters
1.5 liters
Explanation:
Precision in data refers to how close the experimental values of an experiment are to one another irrespective of the true or accepted value. In other words, a set of values are said to be PRECISE if they are close to one another.
In this case, data was collected after conducting an experiment about the amount, in liters, of water a specific plant needs per month. However, according to the set of experimental values provided, only 1.1 litres, 1.2litres and 1.5litres are close to one another and, hence, are said to be PRECISE even if they are not close to the accepted value of 6litres.
Answer:
A is your answer i believe
Explanation:
The Zn that is 1.33 g is used at the start of the reaction where f is 520 ml and h2 collected over water is 28oc and the atmospheric pressure is 1.0 atm.
Given If 520 ml of H2 is gathered over Wate at 28 diploma Celsius and the atmospheric strain is 1 ATM if vapour strain of wate at 28 diploma celsius is 28.three mmhg then the quantity of zn in grams taken at begin of the response is.
We recognise that
h * 2 = PT - P * h * 20 = 1atm - 0.037atm
= 0.963 atm
1 * h * 2 = Ph * 2V / R * T
= 0.963 atm x 0.520 L / 0.0821 L atm/
molK * 301
= 0.02 mol h2
= 0.02molZn
So 0.02 mol Zn x 65.39 g/mol
= 1.33 g Zn
Read more about zinc;
brainly.com/question/28880469
#SPJ4
So, water reacts with hydrochloric acid in the following formula
H2O + HCl —-> H3O+ + Cl-
We can visualize that when the two react, the hydrogen ions is taken on by the water molecule. This satisfies one of the definitions for a base
Bronsted acids = anything that donates a proton (H+ ion)
Bronsted bases = anything that accepts a proton (H+ ion)
So, as we can see, that is exactly what is happening. The Cl- and H+ detach and then the water takes on that extra H+.
H3O+ is what we call a hydronium ion
Answer:
I believe it would be called the ionization energy
Explanation: