Answer:
The size of soil particles is important. The amount of open space between the particles influences how easily water moves through a soil and how much water the soil will hold. Too much clay, in proportion to silt and sand, causes a soil to take in water very slowly. Such a soil gives up its water to plants slowly.
Answer:
Most common insulation materials work by slowing conductive heat flow and--to a lesser extent--convective heat flow. Radiant barriers and reflective insulation systems work by reducing radiant heat gain. To be effective, the reflective surface must face an air space.
Explanation:
To be effective, the reflective surface must face an air space.
Explanation:
Respuesta: La masa atómica del carbono (C) es 12 g/mol; para el oxígeno (O) es de 16 g/mol. Esto significa que 6.022 x 1023 átomos de carbono pesan 12 gramos. Según esto, el peso molecular del CO2 es: 12 g/mol [C] + 2 x 16 g/mol [O2] = 44 g/mol
From ideal gas equation that is PV=nRT
n(number of moles)=PV/RT
P=760 torr
V=4.50L
R(gas constant =62.363667torr/l/mol
T=273 +273=298k
n is therefore (760torr x4.50L) /62.36367 torr/L/mol x298k =0.184moles
the molar mass of NO2 is 46 therefore density= 0.184 x 46=8.464g/l
Answer:
Neon (Ne) has the most stable outer electron configuration because the outer electron is completely filled and it has octet structure
Explanation:
The configuration of these elements is as follows;
Cl₁₇ = 2, 8,7 (the outer electron is 7)
Ca₂₀ = 2,8,8,2 (the outer electron is 2)
Ne₁₀ = 2,8 (the outer electron is 8)
Na₁₁ = 2,8,1 (the outer electron is 1)
Based on the outer electron value above, Neon (Ne) has the most stable outer electron configuration because the outer electron is completely filled and it has octet structure.