The number of particles in one mole is given be Avagadro's number <span>6.022×10^23
Multiply by number of moles.
3 ×10^-21 mol * 6.022 ×10^23 molecules/mol = </span><span>1,807 molecules
(rounded to nearest whole number)
</span>
<u>Given: </u>
Radius of culvert, r = 0.5 m
Tangential acceleration of the truck, a = 3 m/s2
<u>To determine:</u>
The angular acceleration, α
<u>Explanation:</u>
The tangential acceleration is related to the angular acceleration through the radius as:
a = rα
α = a/r = 3 ms⁻²/0.5 m = 6 s⁻²
Ans: The angular acceleration is 6 s⁻²
c. x-rays
My answer is that x-rays or gamma rays have the greatest (or highest) frequency waves.
According to Charles' Law the volume of an ideal gas is directly proportional to its absolute temperature in Kelvin keeping the pressure constant.
V∝ T, P is constant
where V, T and P are volume, temperature and pressure
= 
where V₁, T₁, V₂ and T₂ are initial volume, initial temperature, final volume and final temperature.
The mass of hydrogen atoms that is measured at 54 u given the relationship is 89.64×10¯²⁴ g
<h3>Conversion scale </h3>
1 u = 1.66×10¯²⁴ g
<h3>How to determine the mass of hydrogen atoms </h3>
- Mass of Hydrogen (u) = 54 u
- Mass of Hydrogen (g) =?
1 u = 1.66×10¯²⁴ g
Therefore
54 u = 54 × 1.66×10¯²⁴ g
54 u = 89.64×10¯²⁴ g
Thus, the mass of the hydrogen atoms measured at 54 u is 89.64×10¯²⁴ g
Learn more about conversion:
brainly.com/question/2139943
#SPJ1