Answer:
Explanation:
Given that:
Half life = 30 min
Where, k is rate constant
So,
The rate constant, k = 0.0231 min⁻¹
Using integrated rate law for first order kinetics as:
Where,
is the concentration at time t
is the initial concentration
Given that:
The rate constant, k = 0.0231 min⁻¹
Initial concentration = 7.50 mg
Final concentration = 0.25 mg
Time = ?
Applying in the above equation, we get that:-
It's A, t<span>The figure is a molecule and an element.</span>
Methane gas and chlorine gas react to form hydrogen chloride gas and carbon tetrachloride gas. What volume of hydrogen chloride would be produced by this reaction if 3.16 L of chlorine were consumed at STP.
Be sure your answer has the correct number of significant digits.
Answer: Thus volume of carbon tetrachloride that would be produced is 0.788 L
Explanation:
According to ideal gas equation:
P = pressure of gas = 1 atm (at STP)
V = Volume of gas = 3.16 L
n = number of moles = ?
R = gas constant =
T =temperature =
According to stoichiometry:
4 moles of chlorine produces = 1 mole of carbon tetrachloride
Thus 0.141 moles of methane produces = moles of carbon tetrachloride
volume of carbon tetrachloride =
Thus volume of carbon tetrachloride that would be produced is 0.788 L
Answer:
Two methods which help us to conserve water are:
Sprinkler irrigation system: this irrigation has an arrangement of vertical pipes with rotating nozzles on the top. It is more useful in the uneven and sandy land where sufficient water is not available.
Drip irrigation system: this irrigation system has an arrangement of pipes or tubes with very small holes in them to water plants drop by drop just at the base of the root. It is very efficient as water is not wasted at all.