Answer:
2 molecules of water represents 3.32 x 10^-24 moles of water.
Explanation:
To find the solution to this problem, you have to use the concept of Avogadro´s number, that is in 1 mol of any element o compound there are 6.022 x 10^23 molecules. Then,
1 mol H2O ------------- 6.022 x 10^23 molecules
x= 3.32 x 10^-24 ---- 2 molecules.
2 molecules of water represents 3.32 x 10^-24 moles of water.
Answer:
Lighter, positively charged particles form at the top of the cloud. Heavier, negatively charged particles sink to the bottom of the cloud. When the positive and negative charges grow large enough, a giant spark - lightning - occurs between the two charges within the cloud.
Explanation:
Answer: CoBr3 < K2SO4 < NH4 Cl
Justification:
1) The depression of the freezing point of a solution is a colligative property, which means that it depends on the number of particles of solute dissolved.
2) The formula for the depression of freezing point is:
ΔTf = i * Kf * m
Where i is the van't Hoof factor which accounts for the dissociation of the solute.
Kf is the freezing molal constant and only depends on the solvent
m is the molality (molal concentration).
3) Since, you are assuming equal concentrations and complete dissociation of the given solutes, the solute with more ions in the molecular formula will result in the solution with higher depression of the freezing point (lower freezing point).
4) These are the dissociations of the given solutes:
a) NH4 Cl (s) --> NH4(+)(aq) + Cl(-) (aq) => 1 mol --> 2 moles
b) Co Br3 (s) --> Co(3+) (aq) + 3Br(-)(aq) => 1 mol --> 4 moles
c) K2SO4 (s) --> 2K(+) (aq) + SO4 (2-) (aq) => 1 mol --> 3 moles
5) So, the rank of solutions by their freezing points is:
CoBr3 < K2SO4 < NH4 Cl
Answer:
uranium, caesium, potassium, beryllium,
Explanation:
Answer:
True
Explanation:
Here is an example: chemical properties include flammability, toxicity, acidity, reactivity. we observe the changes of these properties. Therefore, It's true.