It is correct because the water level will be different when the statue fall into it the water level will be higher . it is because it is named by displacement
u subtract the the water level of the pond before the statue fall into it and after, this will get the volume of the statue.
Answer:
T = 4.42 10⁴ N
Explanation:
this is a problem of standing waves, let's start with the open tube, to calculate the wavelength
λ = 4L / n n = 1, 3, 5, ... (2n-1)
How the third resonance is excited
m = 3
L = 192 cm = 1.92 m
λ = 4 1.92 / 3
λ = 2.56 m
As in the resonant processes, the frequency is maintained until you look for the frequency in this tube, with the speed ratio
v = λ f
f = v / λ
f = 343 / 2.56
f = 133.98 Hz
Now he works with the rope, which oscillates in its second mode m = 2 and has a length of L = 37 cm = 0.37 m
The expression for standing waves on a string is
λ = 2L / n
λ = 2 0.37 / 2
λ = 0.37 m
The speed of the wave is
v = λ f
As we have some resonance processes between the string and the tube the frequency is the same
v = 0.37 133.98
v = 49.57 m / s
Let's use the relationship of the speed of the wave with the properties of the string
v = √ T /μ
T = v² μ
T = 49.57² 18
T = 4.42 10⁴ N
Answer:
sorry- but what........?!
Answer:
Read below!
Explanation:
You can watch the sun wheel across the sky during the day, and the stars at night. Focus a telescope on any star besides the north star--especially southern stars--and you can watch them drift across your field of view.
An alternative explanation is that all the stars are painted on (or holes in) some canopy that rotates around the earth. This explanation does not account for the motion of the "wanderers," or planets, as the Greeks called them, or for the path of the moon among the stars.
As we know the stars are massive bodies of significant and varying distance to the earth, the notion they all swing around us in unison seems highly implausible