With arms outstretched,
Moment of inertia is I = 5.0 kg-m².
Rotational speed is ω = (3 rev/s)*(2π rad/rev) = 6π rad/s
The torque required is
T = Iω = (5.0 kg-m²)*(6π rad/s) = 30π
Assume that the same torque drives the rotational motion at a moment of inertia of 2.0 kg-m².
If u = new rotational speed (rad/s), then
T = 2u = 30π
u = 15π rad/s
= (15π rad/s)*(1 rev/2π rad)
= 7.5 rev/s
Answer: 7.5 revolutions per second.
Answer:
The momentum would be doubled
Explanation:
The magnitude of the momentum of the freight train is given by:

where
m is the mass of the train
v is its speed
In this problem, we have that the speed of the train is unchanged, while the mass of the train is doubled:

therefore, the new momentum is

so, the momentum has also doubled.
Answer:
D
Explanation:
Just had the same question and couldnt find and answer so i guessed. heres the answer no lol!
The best way in handling in this situation is that in order for the astronaut to be able to get back to the shuttle is that he or she should take an object from his or her tool belt and to be thrown out away from the shuttle. This will allow her to weight lightly and safely return to the shuttle and would be easier for his or her to do so.
Answer: The weight of the air displaced by the balloon is less than the volume of the balloon.
Explanation:
A hot air balloon is a cloth wrap that contains several thousand cubic meters of air inside (a large volume of air). The burner heats the liquid propane to a gaseous state to generate a huge flame, which can reach more than 3 meters, thus heating the air mass inside the balloon. In this way,<u> its density is modified with respect to the air that surrounds it</u>, because the hot air is lighter than the outside air (less dense), causing the balloon to rise and float.
Now, if we know that the density of a body
is directly proportional to its mass
and inversely proportional to its volume
:

We can deduce that <u>by increasing the volume of the body, its density will decrease.</u>
This is proof of <em><u>Archimedes' Principle</u></em>:
<em>A body totally or partially immersed in a fluid at rest, experiences a vertical upward thrust equal to the mass weight of the body volume that is displaced.</em>
In this case the fluid is the air outside. So, the warm air inside the balloon, being less dense, will weigh less than the outside air and therefore will receive an upward pushing force or thrust that will make the balloon ascend.