Answer:
hmax = 1/2 · v²/g
Explanation:
Hi there!
Due to the conservation of energy and since there is no dissipative force (like friction) all the kinetic energy (KE) of the ball has to be converted into gravitational potential energy (PE) when the ball comes to stop.
KE = PE
Where KE is the initial kinetic energy and PE is the final potential energy.
The kinetic energy of the ball is calculated as follows:
KE = 1/2 · m · v²
Where:
m = mass of the ball
v = velocity.
The potential energy is calculated as follows:
PE = m · g · h
Where:
m = mass of the ball.
g = acceleration due to gravity (known value: 9.81 m/s²).
h = height.
At the maximum height, the potential energy is equal to the initial kinetic energy because the energy is conserved, i.e, all the kinetic energy was converted into potential energy (there was no energy dissipation as heat because there was no friction). Then:
PE = KE
m · g · hmax = 1/2 · m · v²
Solving for hmax:
hmax = 1/2 · v² / g
Answer : 6.3 g/cm3
Step by step explanation:
Density = mass/volume
Answer:
Whats up Bmw,
The organisms is caused when both the organisms or species are harmed, which is limited supply of at least one resource from food or even water used by both can be a factor.
Explanation:
Hope I helped you, and let me know if you need help on anything else :p
I believe it would be x because you are trying to find the width of the wave but i could be wrong
Answer:
a mixture that can be separated