The perimeter of a triangle is the sum of its sides
Perimeter = 12 2/3 inches + 10 1/3 inches + 5 1/3 inches = 28 1/3 inches
Answer : 28 1/3 inches
Hope this helps!
Option B: 8x+1 has the steepest slope
Step-by-step explanation:
Slope is defined as the rate of change of a line
The steepness of a slope means how close it is to being vertical
The greater value of slope means, more steepness. The value of slope can wither b positive or negative
We have to compare the slopes of all given options to find the steepest slope
As the options are in slope-intercept form, the coefficients of x will be the slope
So,
a. Slope = -4
b. Slope = 8
c. Slope = 2/3 = 0.66
d . Slope = 1/7 = 0.14
We can see that the largest value of slope in negative and positive is 8
So,
Option B: 8x+1 has the steepest slope
Keywords: Slope, steepness
Learn more about slopes at:
#LearnwithBrainly
Answer:
X to the second power + 5x + 6
Step-by-step explanation:
distribute (X + 2) and (X + 3)
you should get X to the second power + 3x + 2x + 6
then you add like terms (3x + 2x)
then you should get X to the second power + 5x + 6
1. y=4x
2. y=-7x-8
3. y=5x+63
4. y=¾x+8
5. y=-3x-½
6. y=1x-3
7. y=2
8. y=-2x+1
9. y=4x+7
wor<u>k for 9</u>
1=4(2)+b
1= 8 +b
-8 -8
7=b
10. y=0
11. y=¾x+6
<u>work </u><u>for </u><u>1</u><u>1</u>
<em>9</em><em> </em><em>=¾(4)+b</em>
<em>=¾(4)+b9</em><em> </em><em>= 3</em><em> </em><em> </em><em> </em><em>+b</em>
<em>+b-3=-3</em>
<em>+b-3=-3 6=</em><em>b</em>
<em>1</em><em>2</em><em>.</em><em> </em><em>sorry </em><em>I </em><em>haven't</em><em> </em><em>done </em><em>thai </em><em>one </em><em>in </em><em>a </em><em>while.</em>
<em>I </em><em>was </em><em>too </em><em>lazy </em><em>to </em><em>include</em><em> </em><em>the </em><em>work </em><em>for </em><em>the </em><em>first </em><em>couple</em><em> </em><em>of </em><em>answers</em><em> </em><em>although</em><em> </em><em>I </em><em>recommend</em><em>.</em><em> </em>
<em>M</em>
<em>A</em>
<em>T</em>
<em>H</em>
<em>W</em>
<em>A</em>
<em>Y</em>
<em>they </em><em>include</em><em> </em><em>work </em><em>with </em><em>ads</em>