Answer : Broadly solids are divided into three categories;
i) Crystalline solids have a regular definite structure, in which the particles pack in a repeating pattern from one edge of the solid to the other.
ii) Amorphous solids have a random structure, with little unorganized pattern long-range order.
iii) Polycrystalline solids are those where an aggregate which consists of a large number of small crystals or grains in which the structure is regular, but the crystals or grains are found to be arranged in a random fashion.
Also solids can be divided into 3 more categories according to their bonds;
i) Covalent solids, like diamond, which forms crystals that can be viewed as a single giant molecule made up of an almost endless number of covalent bonds.
ii) Ionic solids are basically salts, such as NaCl, in which the molecules are held together by the strong force of attraction between ions of opposite charge.
iii) Metallic solids are found in metals which have the force of attraction between atoms of metals, such as copper and aluminum, or alloys, such as brass and bronze, are metallic bonds.
You need to first write a chemical equation and balance it
C₄H₁₀ + O₂ → CO₂ + H₂O
2 C₄H₁₀ + 13 O₂ → 8 CO₂ + 10 H₂O
1.0 moles X moles
1.0 mol C₄H₁₀ (

) = 4 moles of CO₂
Answer: -
A solar nebula is a rotating cloud of gas and dust from which the sun and the planets formed.
A planetesimal is a small body from which planet originated in the early stages of development of the solar system.
Kupier belt is region of the solar system that is just beyond the orbit of Neptune and that contains bodies made mostly of ice.
This is the region of the solar system that contains small bodies that are made mostly of ice.
Thus Pluto is formed from the huge disk of ice and debris beyond the outer planets. Comets originating from the Kupier belt are also composed of ice and debris.
Answer: option <span>C. the total energy inside the calorimeter will decrease.
</span>
Justification:
The answer is a direct application of the first law of thermodynamic (the law of conservation of energy).
By telling that the t<span>he calorimeter is sealed so that there is no heat exchanged between the contents of the container and the surrounding air, the first law of thermodynamics implies that the total energy inside the calorimeter will not change.
</span>
<span>That statement, without adding any more is enough justification.
</span>
Regarding, the other statements, you can show they are true:
<span>A.
the thermometer will show an increase in temperature.
</span><span>
</span><span>
</span><span>Since the reaction is exothermic, the heat released will increase the temperature inside the sealed calorimeter,which, of course, is shown by the termometer.
</span><span>
</span><span>
</span><span>
</span><span>B. The potential
energy of the products will be lower than that of the reactants.
</span><span>
</span><span>
</span><span>In any exothermic reaction, the potential energy of the products is lower than that of the reactants, because the heat released is lost by the reactants when they react and transform into the products.
</span><span>
</span><span>
</span><span>D. The water
increases in temperature as the reaction gives off heat</span>.
Sure. The heat cannot leave the sealed calorimeter, but the water inside the calorimeter will absorb that heat: the molecules of water will gain kinetic energy and so its temperature will be increase.