Answer:
Silver, 0.239 J/(g °C)
Explanation:
- The heat change is related to specific heat as given by the formula;
Heat change = mass of substance × specific heat × change in temperature
- Therefore; considering same amount of substance or equal masses and have the same initial temperature.
- The change in temperature will be inversely proportional to the specific heat.
- Therefore; the higher the specific heat lower the temperature change.
- Hence, the change in temperature will be highest for the substance with the lowest specific heat.
Therefore; the one that will increase in temperature the most is Silver
Heat radiates from the fire and cooks the marshmallow because heat transfer.
The Constitution provides the basic structure for US Government.
As a sidenote, you posted this in Chemistry, when it actually belongs in another topic. Please be sure to post questions only where they belong. Thanks! :)
Answer:
Change in entropy for the reaction is
ΔS° = -268.13 J/K.mol
Explanation:
To calculate the change in entropy for the balanced reaction, we require the natural entropy of all the reactants and products in the reaction.
3 NO₂(g) + H₂O(l) → 2 HNO₃(l) + NO(g)
From Literature.
S°(NO₂) = 240.06 J/K.mol
S°(H₂O) = 69.91 J/K.mol
S°(HNO₃) = 155.60 J/K.mol
S°(NO) = 210.76 J/K.mol
These are the entropies of the reactants and products under standard conditions of 298.15 K and 1 atm.
Note that
ΔS° = Σ nᵢS°(for products) - Σ nᵢS°(for reactants)
Σ nᵢS°(for products) = [2 × S°(HNO₃)] + [1 × S°(NO)]
= (2 × 155.60) + (1 × 210.76) = 521.96 J/K.mol
Σ nᵢS°(for reactants) = [3 × S°(NO₂)] + [1 × S°(H₂O)]
= (3 × 240.06) + (1 × 69.91) =790.09 J/K.mol
ΔS° = Σ nᵢS°(for products) - Σ nᵢS°(for reactants)
ΔS° = 521.96 - 790.09 = -268.13 J/K.mol
Hope this Helps!!