Answer:
750W
Explanation:
40×10= 400N
work done= force × distance
=400 × 75
=30000 J
Power= work done/ time
= 30000 ÷ 40
= 750 W
Answer:
θ=180°
Explanation:
The problem says that the vector product of A and B is in the +z-direction, and that the vector A is in the -x-direction. Since vector B has no x-component, and is perpendicular to the z-axis (as A and B are both perpendicular to their vector product), vector B has to be in the y-axis.
Using the right hand rule for vector product, we can test the two possible cases:
- If vector B is in the +y-axis, the product AxB should be in the -z-axis. Since it is in the +z-axis, this is not correct.
- If vector B is in the -y-axis, the product AxB should be in the +z-axis. This is the correct option.
Now, the problem says that the angle θ is measured from the +y-direction to the +z-direction. This means that the -y-direction has an angle of 180° (half turn).
Answer:
C. crust, mantle, core
Explanation:
density increases as you travel from the crust to the inner core
the crust is on top
next is the mantle
and then the core
Answer:
α= 1.3 10-5 ºC⁻¹
Explanation:
La dilatación termica de los cuerpos esta dada por la relación
ΔL = L₀ α ( T -T₀)
en este caso nos piden el coeficiente de dilatación térmica
α =DL/L₀ DT
calculemos
α = ( 100,13 -100)/[100 (100 – 0)]
α = 1,3 10-5 ºC⁻¹
Traduction
The thermal expansion of bodies is given by the relationship
ΔL = L₀ α (T -T₀)
in this case they ask us for the coefficient of thermal expansion
α = ΔL / L₀ ΔT
let's calculate
α = (100,13 -100) / [100 (100 - 0)]
α= 1.3 10-5 ºC⁻¹
In 0.25h it will move in 22.5 kilometers.