Answer:
true
Explanation:
for example assume you are setting in a moving bus and when someone see you from the ground you are in motion but for some who is with you in the bus you are not in motion.
<span>The equation that relates Wavelength & frequency of electromagnetic waves is :
Velocity (c) = Wavelength (λ) * frequency (f) ------ (1)
Electromagnetic wave velocity (c) = Speed of Light = 3 * 10^8 m/s
From (1),
Wavelength , λ = c / f
λ= (3*10^8)/(980*10^3)
λ = 306.12 m
Minimum height of the antenna for effective transmission = λ * 0.5 = 306.12*0.5
Answer : 153 m (rounded off)</span>
To develop this problem it is necessary to apply the concepts related to Wavelength, The relationship between speed, voltage and linear density as well as frequency. By definition the speed as a function of the tension and the linear density is given by

Where,
T = Tension
Linear density
Our data are given by
Tension , T = 70 N
Linear density , 
Amplitude , A = 7 cm = 0.07 m
Period , t = 0.35 s
Replacing our values,



Speed can also be expressed as

Re-arrange to find \lambda

Where,
f = Frequency,
Which is also described in function of the Period as,



Therefore replacing to find 


Therefore the wavelength of the waves created in the string is 3.49m
The weight should be shared between the two string equally. Therefore, tension in each string, T is;
T = 120 N/2 = 60 N
The value of R3 is A) 10 Ω