Answer:
Resistance is a measure of the opposition to current flow in an electrical circuit.
Explanation:
Answer:
q = 8.57 10⁻⁵ mC
Explanation:
For this exercise let's use Newton's second law
F = ma
where force is magnetic force
F = q v x B
the bold are vectors, if we write the module of this expression we have
F = qv B sin θ
as the particle moves perpendicular to the field, the angle is θ= 90º
F = q vB
the acceleration of the particle is centripetal
a = v² / r
we substitute
qvB = m v² / r
qBr = m v
q =
The exercise indicates the time it takes in the route that is carried out with constant speed, therefore we can use
v = d / t
the distance is ¼ of the circle,
d =
d =
we substitute
v =
r =
let's calculate
r =
2 2.2 10-3 88 /πpi
r = 123.25 m
let's substitute the values
q =
7.2 10-8 88 / 0.6 123.25
q = 8.57 10⁻⁸ C
Let's reduce to mC
q = 8.57 10⁻⁸ C (10³ mC / 1C)
q = 8.57 10⁻⁵ mC
Answer:
c
Explanation:
I think but if I'm wrong I'm sorry
The reason why there is no energy shortage nor will there ever be is because energy is being preserved and conserved and only changes form. It never gets lost or increased.
2.5m/s
Explanation:
Given parameters:
Initial velocity = 0m/s
Acceleration = 0.5m/s²
time of travel = 5s
Solution:
Final velocity = ?
Solution:
Acceleration can be defined as the change in velocity with time:
Acceleration = 
From the equation above, the unknown is final velocity:
Final velocity - initial velocity = Acceleration x time
since initial velocity = 0
Final velocity = 0.5 x 5 = 2.5m/s
Learn more:
Acceleration brainly.com/question/3820012
#learnwithBrainly