There are two big advantages of using molarity to express concentration. The first advantage is that it's easy and convenient to use because the solute may be measured in grams, converted into moles, and mixed with a volume.
The second advantage is that the sum of the molar concentrations is the total molar concentration. This permits calculations of density and ionic strength
Answer:
1.9 L
Explanation:
Step 1: Given data
- Initial pressure (P₁): 1.5 atm
- Initial volume (V₁): 3.0 L
- Initial temperature (T₁): 293 K
- Final pressure (P₂): 2.5 atm
- Final temperature (T₂): 303 K
Step 2: Calculate the final volume of the gas
If we assume ideal behavior, we can calculate the final volume of the gas using the combined gas law.
P₁ × V₁ / T₁ = P₂ × V₂ / T₂
V₂ = P₁ × V₁ × T₂ / T₁ × P₂
V₂ = 1.5 atm × 3.0 L × 303 K / 293 K × 2.5 atm = 1.9 L
Answer:
%H = 6.72 %
Explanation:
Percent composition of an element is the total mass of that element divided by the molecular mass of compound (or molecular mass) of which it is present in.
So,
Percent composition of Hydrogen will be given as,
%H = Total mass of H / Molecular Mass of Acetic Acid × 100
So,
Total Mass of H = 1.01 × 4 = 4.04 g
Molecular Mass of Acetic acid = 60.052 g/mol
Putting values in above formula,
%H = 4.04 g/mol ÷ 60.052 g/mol × 100
%H = 6.72 %
Answer:
B
Explanation:
Particles in a solid have fixed locations in a volume that does not change. Solids have a definite volume and shape because particles in a solid vibrate around fixed locations.