Answer:
The molarity of the solution is 1,03 M.
Explanation:
Molarity is a concentration measure that expresses the moles of solute (in this case HBR) in 1 liter of solution (1000ml). First we calculate the mass of 1 mol of HBr, to calculate the moles that are in 50 g of said compound:
Weight 1 mol HBr= Weight H + Weight Br= 1,01g + 79,90g= 80, 91 g/mol
80,91 g ----1 mol HBr
50,0 g------x= (50,0 g x1 mol HBr)/80,91 g= 0,62 mol HBr
600 ml solution-----0,62 mol HBr
1000ml solution------x= (1000ml solution x 0,62 mol HBr)/600 ml solution
<em>x=1,03 moles HBr ---> The solution is 1,03M</em>
uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuum i thinkitis the way its shaped
0.370 mol metal oxide = 55.45 g
<span>1 mol = 55.45/0.370 = 149.86 g </span>
<span>in 1 mol there are 3 mol O = 16 * 3 = 48 g of O </span>
<span>there is 48/149.86 * 100% O in the sample </span>
<span>the sample has 48/149.86 * 0.370 = 0.119 g O</span>
Answer:
1
Explanation:
The numbers in front of the formulas (the coefficients) tell you how many moles of a substance are involved in a reaction.
If no coefficient is shown, we assume it is 1.
NOCl has no coefficient, so 1 mol of NOCl is in the balanced equation.
Answer:
12 oxygen atoms are in 4 molecules of HNO3?
Explanation:
the amounts of atoms of all the component in HNO3, which are 1 atom of Hydrogen, 1 atom of Nitrogen and 3 atoms of Oxygen.