Some
of the solutions exhibit
colligative properties. These properties depend on the amount of solute
dissolved in a solvent. These properties include freezing point depression, boiling
point elevation, osmotic pressure and vapor pressure lowering. Calculations
are as follows:
<span>
ΔT(freezing point) = (Kf)mi
3 = 1.86 °C kg / mol (m)(2)
3 =3.72m
m = 0.81 mol/kg</span>
Answer:
207g
Explanation:
Given compound:
Ca(ClO₃)₂
The equivalent mass can be derived by summing the molar masses of each atom
Molar mass of Ca = 40
Cl = 35.5
O = 16
Now solve;
Molar mass = 40 + 2(35.5 + 3(16)) = 207g
Answer: 2 moles
Explanation:
STP is Standard Temperature and Pressure. That means the pressure is 1.00 atm and the temperature is 273K. Since the oxygen is placed in the same container, we can use Ideal Gas Law to figure out what container the CO₂ used.
Ideal Gas Law: PV=nRT
P=1.00 atm
n=moles
R=0.08206 Latm/Kmol
T=273K
CO₂
Since we know that CO₂ has a 44.8 L container, we can use that to find the moles of oxygen.
There are 2 mol of oxygen.
Answer:
When a physical change occurs, the arrangement of particles within the substance may change, but the atoms in the molecules remain bonded together.
Explanation:
Srry didn't see this till now, hope u got it right :)
Answer:
Therefore, the rate of change in the amount of salt is
Explanation:
Given:
Initial volume of water lit
Flowing rate = 5
The rate of change in the amount of salt is given by,
( Rate of salt enters tank - rate of sat leaves tank )
Since tank is initially filled with water so we write that,
Let amount of salt in the solution is ,
Therefore, the rate of change in the amount of salt is