O valence electron number is the answer
Answer:
The molar mass of the metal is 54.9 g/mol.
Explanation:
When we work with gases collected over water, the total pressure (atmospheric pressure) is equal to the sum of the vapor pressure of water and the pressure of the gas.
Patm = Pwater + PH₂
PH₂ = Patm - Pwater = 1.0079 bar - 0.03167 bar = 0.9762 bar
The pressure of H₂ is:

The absolute temperature is:
K = °C + 273 = 25°C + 273 = 298 K
We can calculate the moles of H₂ using the ideal gas equation.

Let's consider the following balanced equation.
M(s) + H₂SO₄(aq) ⟶ MSO₄(aq) + H₂(g)
The molar ratio of M:H₂ is 1:1. So, 9.81 × 10⁻³ moles of M reacted. The molar mass of the metal is:

I think It’s 55 but that’s just me
Answer:
True.
Explanation:
Here is an example: Hubble Space Telescope's launch in 1990 sped humanity to one of its greatest advances in that journey. Hubble is a telescope that orbits Earth. Its position above the atmosphere, which distorts and blocks the light that reaches our planet, gives it a view of the universe that typically far surpasses that of ground-based telescopes.
Hubble is one of NASA's most successful and long-lasting science missions. It has beamed hundreds of thousands of images back to Earth, shedding light on many of the great mysteries of astronomy. Its gaze has helped determine the age of the universe, the identity of quasars, and the existence of dark energy.
Answer:
I would try but i just need points good luck tho