Answer:
8 neutrons
A is the number of neutrons plus protons in the nucleus. However, we already know that there are 7 protons. Therefore, there must be 8 neutrons in the nucleus to add up to 15. Table 3.
Element Symbol Number of Neutrons
carbon 146C 8
nitrogen 147N 7
157N 8
oxygen 168O 8
Explanation:
<span>Take the inversion of density: 1mL/13.6 g and multiply it by the conversion factor 453.6 g/ 1 lb and the given 5.00 lb. Units for mass (grams) and units for weight (lbs) cancel leaving only units of volume. I believe it should be 167 mL or 0.167 L</span>
<u>Answer:</u>
<em>Here the given material is taken and mixed with water.</em>
<u>Explanation:</u>
The amount of material and water taken are same. Hence if it is not soluble in water it should make a dense and flowy paste like material and if it is soluble in water it should this and thicker density of water should remain.
If the amount of water that we are taking is more than the material will float in water if it is not soluble and lighter than water or would sink if it is heavier than water.
Answer:
Reaction 1 is balanced but 2 is not balanced , the balance equation are :
1. 
2.
Explanation:
Balanced Equations : These are the equation which follows the law of conservation of mass .
The total number of atoms present in reactant is equal to total number of atoms present in product.
1. 
This is acid - base type reaction where
act as Acid
act as weak base
Reactant :
,
Number of atoms of :
C = 2 (
) + 1 (
)
= 2 + 1
= 3
H = 4(
) + 1 (
)
= 4 + 1
5
O = 2(
) + 3 (
)
= 5
Na = 1 (
)
= 1
Product :
,
, 
Number of atoms :
C = 1(
) + 2(
)
= 1 + 2
= 3
H = 2(
) + 3(
)
= 2 + 3
= 5
O = 1(
) + 2(
)
+2(
= 1 + 2 + 2
= 5
Na = 1(
= 1
Number of Na =1 , C = 3 , H= 5 and O =5 in both reactant and product , so it is a balanced reaction
2.
This is double displacement reaction .
Check the balancing in both reactant and products should be :
Na = 2
H = 2
Ca = 1
C = 2
O = 6
Cl = 2
Answer:
D. 4
Explanation:
Answer and Explanation: Carbon can form a maximum of four covalent bonds. Carbon can share up to four pairs of electrons, therefore, the carbon atom fills its outer energy level and achieves chemical stability.