1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
velikii [3]
3 years ago
11

Hey can anyone help me with my physics exam​

Physics
2 answers:
Ierofanga [76]3 years ago
7 0
25 is the correct answer
Alona [7]3 years ago
5 0

Answer:

25 is the correct answer

You might be interested in
You're carrying a 3.2-m-long, 24kg pole to a construction site when you decide to stop for a rest. You place one end of the pole
Aleksandr [31]

Answer:

Tension of 132N

Explanation:

We need to apply Summatory of Force to find the tension in the hand.

We define te tensión in the hand as F_2 and the Tension in fence post as F_1, then

\sum F = 24(9.8)

F_1 + F_2= 24(9.8)

We apply summatory of moments then

F_2*1.25 = F_1*1.6

Where the Force 2 is 1.25m from the center of summatory,

We can note that,

1.6 m - 0.35m=1.25m

We have two equation and two incognites, then replacing (1) in (2)

1.6(235.2 -F_2) = 1.25F_2

376.32 = F2(1.6+1.25)

F_2= \frac{376.32}{2.85}

F_2 =132 N

5 0
3 years ago
What is its maximum altitude above the ground? The answer is the maximum height above the ground
Kisachek [45]

Answer:

Maximum altitude above the ground = 1,540,224 m = 1540.2 km

Explanation:

Using the equations of motion

u = initial velocity of the projectile = 5.5 km/s = 5500 m/s

v = final velocity of the projectile at maximum height reached = 0 m/s

g = acceleration due to gravity = (GM/R²) (from the gravitational law)

g = (6.674 × 10⁻¹¹ × 5.97 × 10²⁴)/(6370000²)

g = -9.82 m/s² (minus because of the direction in which it is directed)

y = vertical distance covered by the projectile = ?

v² = u² + 2gy

0² = 5500² + 2(-9.82)(y)

19.64y = 5500²

y = 1,540,224 m = 1540.2 km

Hope this Helps!!!

3 0
3 years ago
How does the increasing mass effect the force of an object in motion?​
irina [24]

Answer:

<u>According </u><u>to </u><u>second </u><u>law </u><u>of </u><u>motion</u><u>,</u><u>t</u><u>he acceleration of an object depends directly upon the net force acting upon the object, and inversely upon the mass of the object. As the force acting upon an object is increased, the acceleration of the object is increased. As the mass of an object is increased, the acceleration of the object is decreased.</u>

<em>So </em><em>simply</em><em>,</em><em> </em><em>it </em><em>can </em><em>be </em><em>affected </em><em>due </em><em>to </em><em>increasing </em><em>force </em><em>as </em><em>there </em><em>is </em><em>close </em><em>relationship </em><em>between </em><em>momentum.</em>

Explanation:

<em>The more inertia that an object has, the more mass that it has. A more massive object has a greater tendency to resist changes in its state of motion.</em>

<em>I </em><em>hope </em><em>it </em><em>was </em><em>helpful </em><em>for </em><em>you </em><em>:</em><em>)</em>

7 0
1 year ago
URGENT!!!
madreJ [45]

Answer:

f=6.97\times 10^{14}\ Hz

Explanation:

Given that,

Wavelength, \lambda=430\ nm=430\times 10^{-9}\ m

We need to find the frequency of the violet light.

We know that the relation between frequency and wavelength is given by :

f=\dfrac{c}{\lambda}\\\\f=\dfrac{3\times 10^8}{430\times 10^{-9}}\\\\f=6.97\times 10^{14}\ Hz

So, the frequency of violet light is 6.97\times 10^{14}\ Hz.

7 0
3 years ago
If the briefcase hits the water 6.0 s later, what was the speed at which the helicopter was ascending?
vovikov84 [41]

Complete Question

In an action movie, the villain is rescued from the ocean by grabbing onto the ladder hanging from a helicopter. He is so intent on gripping the ladder that he lets go of his briefcase of counterfeit money when he is 130 m above the water. If the briefcase hits the water 6.0 s later, what was the speed at which the helicopter was ascending?

Answer:

The speed of the helicopter is u  =  7.73 \  m/s

Explanation:

From the question we are told that

   The height at which he let go of the brief case is  h =  130 m  

    The  time taken before the the brief case hits the water is  t =  6 s

Generally the initial speed of the  briefcase (Which also the speed of the helicopter )before the man let go of it is  mathematically evaluated using kinematic equation as

      s = h+  u t +  0.5 gt^2

Here s  is the distance covered by the bag at sea level which is zero

      0 = 130+  u * (6) +  0.5  *  (-9.8) * (6)^2

=>    0 = 130+  u * (6) +  0.5  *  (-9.8) * (6)^2

=>   u  =  \frac{-130 +  (0.5 * 9.8 *  6^2) }{6}

=>   u  =  7.73 \  m/s

     

7 0
3 years ago
Other questions:
  • Two workers are sliding 470 kg crate across the floor. One worker pushes forward on the crate with a force of 450 N while the ot
    14·1 answer
  • In an experiment, 1 mol of propane is burned to form carbon dioxide and water.
    8·1 answer
  • PLEASE NEED THIS QUICKLY
    13·1 answer
  • Uses and effects of UV rays? ​
    14·1 answer
  • The mass of a car is 2,400 kg and its momentum is 22,240 kg<br> m/s. What is its velocity?
    13·1 answer
  • Answer quick to get brain list but not wrong
    9·1 answer
  • Photosynthesis occurs in a plant cell's
    8·1 answer
  • PLEASE HELP I WILL GIVE BRALINEST
    6·2 answers
  • Chimneys don't get smoke in the house because of...?
    11·2 answers
  • It is possible for an object in free fall to be moving:
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!