Answer:
Tension of 132N
Explanation:
We need to apply Summatory of Force to find the tension in the hand.
We define te tensión in the hand as
and the Tension in fence post as
, then


We apply summatory of moments then

Where the Force 2 is 1.25m from the center of summatory,
We can note that,

We have two equation and two incognites, then replacing (1) in (2)




Answer:
Maximum altitude above the ground = 1,540,224 m = 1540.2 km
Explanation:
Using the equations of motion
u = initial velocity of the projectile = 5.5 km/s = 5500 m/s
v = final velocity of the projectile at maximum height reached = 0 m/s
g = acceleration due to gravity = (GM/R²) (from the gravitational law)
g = (6.674 × 10⁻¹¹ × 5.97 × 10²⁴)/(6370000²)
g = -9.82 m/s² (minus because of the direction in which it is directed)
y = vertical distance covered by the projectile = ?
v² = u² + 2gy
0² = 5500² + 2(-9.82)(y)
19.64y = 5500²
y = 1,540,224 m = 1540.2 km
Hope this Helps!!!
Answer:
<u>According </u><u>to </u><u>second </u><u>law </u><u>of </u><u>motion</u><u>,</u><u>t</u><u>he acceleration of an object depends directly upon the net force acting upon the object, and inversely upon the mass of the object. As the force acting upon an object is increased, the acceleration of the object is increased. As the mass of an object is increased, the acceleration of the object is decreased.</u>
<em>So </em><em>simply</em><em>,</em><em> </em><em>it </em><em>can </em><em>be </em><em>affected </em><em>due </em><em>to </em><em>increasing </em><em>force </em><em>as </em><em>there </em><em>is </em><em>close </em><em>relationship </em><em>between </em><em>momentum.</em>
Explanation:
<em>The more inertia that an object has, the more mass that it has. A more massive object has a greater tendency to resist changes in its state of motion.</em>
<em>I </em><em>hope </em><em>it </em><em>was </em><em>helpful </em><em>for </em><em>you </em><em>:</em><em>)</em>
Answer:

Explanation:
Given that,
Wavelength, 
We need to find the frequency of the violet light.
We know that the relation between frequency and wavelength is given by :

So, the frequency of violet light is
.
Complete Question
In an action movie, the villain is rescued from the ocean by grabbing onto the ladder hanging from a helicopter. He is so intent on gripping the ladder that he lets go of his briefcase of counterfeit money when he is 130 m above the water. If the briefcase hits the water 6.0 s later, what was the speed at which the helicopter was ascending?
Answer:
The speed of the helicopter is 
Explanation:
From the question we are told that
The height at which he let go of the brief case is h = 130 m
The time taken before the the brief case hits the water is t = 6 s
Generally the initial speed of the briefcase (Which also the speed of the helicopter )before the man let go of it is mathematically evaluated using kinematic equation as
Here s is the distance covered by the bag at sea level which is zero
=>
=> 
=> 