Answer
(C).
When there is an angle between the two directions, the cosine of the angle must be considered.
Step by step Solution
The work done by a force is defined as the product of the force and the distance traveled in the direction of motion.
The first answer "Only the component of the force perpendicular to the motion is used to calculate the work" is wrong because, the force perpendicular to motion does no work.
The second choice "If the force acts in the same direction as the motion, then no work is done" is wrong because the work in the direction of the force is
.
Fourth answer "A force at a right angle to the motion requires the use of the sine of the angle" is wrong because the
meaning that there is no work done in the direction perpendicular to the motion.
The third answer" When there is an angle between the two directions, the cosine of the angle must be considered." is correct because the work is calculated using the force in the direction of the motion. The magnitude of this force is 
Answer:

Explanation:
For answer this we will use the law of the conservation of the angular momentum.

so:

where
is the moment of inertia of the merry-go-round,
is the initial angular velocity of the merry-go-round,
is the moment of inertia of the merry-go-round and the child together and
is the final angular velocity.
First, we will find the moment of inertia of the merry-go-round using:
I = 
I = 
I = 359.375 kg*m^2
Where
is the mass and R is the radio of the merry-go-round
Second, we will change the initial angular velocity to rad/s as:
W = 0.520*2
rad/s
W = 3.2672 rad/s
Third, we will find the moment of inertia of both after the collision:



Finally we replace all the data:

Solving for
:

Answer:
Velocity = 3.25[m/s]
Explanation:
This problem can be solved if we use the Bernoulli equation: In the attached image we can see the conditions of the water inside the container.
In point 1, (surface of the water) we have the atmospheric pressure and at point 2 the water is coming out also at atmospheric pressure, therefore this members in the Bernoulli equation could be cancelled.
The velocity in the point 1 is zero because we have this conditional statement "The water surface drops very slowly and its speed is approximately zero"
h2 is located at point 2 and it will be zero.
![(P_{1} +\frac{v_{1}^{2} }{2g} +h_{1} )=(P_{2} +\frac{v_{2}^{2} }{2g} +h_{2} )\\P_{1} =P_{2} \\v_{1}=0\\h_{2} =0\\v_{2}=\sqrt{0.54*9.81*2}\\v_{2}=3.25[m/s]](https://tex.z-dn.net/?f=%28P_%7B1%7D%20%2B%5Cfrac%7Bv_%7B1%7D%5E%7B2%7D%20%7D%7B2g%7D%20%2Bh_%7B1%7D%20%29%3D%28P_%7B2%7D%20%2B%5Cfrac%7Bv_%7B2%7D%5E%7B2%7D%20%7D%7B2g%7D%20%2Bh_%7B2%7D%20%29%5C%5CP_%7B1%7D%20%3DP_%7B2%7D%20%5C%5Cv_%7B1%7D%3D0%5C%5Ch_%7B2%7D%20%3D0%5C%5Cv_%7B2%7D%3D%5Csqrt%7B0.54%2A9.81%2A2%7D%5C%5Cv_%7B2%7D%3D3.25%5Bm%2Fs%5D)