Answer:
a= 0.22 m/s²
Explanation:
Given that
M = 3.5 kg
θ = 30°
m = 1 kg
μ= 0.3
The force due to gravity
F₁= M g sinθ
F₁=3.5 x 10 x sin 30
F₁= 17.5 N
F₂ = m g
F₂ = 1 x 10 = 10 N
The maximum value of the friction force on the incline plane
Fr = μ M g cosθ
Fr = 0.3 x 2.5 x 10 cos30°
Fr= 6.49 N
Lets take acceleration of the system is a m/s²
F₁ - F₂ - Fr = (M+m) a
17.5 - 10 - 6.49 = (3.5+1)a
a= 0.22 m/s²
Ans: Let d is the distance from height to our eyes.
<span>Applying the Pythagoras theorem, we get,</span>
<span>Check image: </span>
The path of the raction occurs on the basis of mass of the nuclei involved in reaction.
In case of nuclear fusion, two or more nuclei having less mass fuse(combine, join) together to form a new nuclei(heavier mass but it is relatively stable). During fusion, matter is not conserved because some of the matter is converted into energy(light). This reaction evolves a huge amount of energy and there comes Einstein's famous Energy-mass equivalence formula E=mc^2! :D. The nuclear reaction occuring in stars(including our sun ) is "fusion".
Fission occurs with heavier nuclei such as that of Uranium-235. Which splits into smaller subatomic particles like gamma, neutrons and enormous amount of energy.
Both, Fission and Fusion releases enormous amount of energy and modern nuclear weapons works on the principle of nuclear fission.
I think the main idea is that the middle planets have a solid inner core and that they all could have life on them
Intensity, E follows inverse square law.
E α 1/r²
r is the distance.
So if the distance r is increased by 3, the intensity would be reduced by 3²
3² = 9
So the answer is nines times as low. C.