Answer:

Explanation:
We can solve the problem by using the following suvat equation:

where
v is the final velocity
u is the initial velocity
a is the acceleration
s is the displacement
For the car in this problem:
u = 0 (it starts from rest)
is the final velocity
s = 10 km = 10 000 m is the displacement
Solving for a, we find:

Answer:
El neumático soportará una presión de 1.7 atm.
Explanation:
Podemos encontrar la presión final del neumático usando la ecuación del gas ideal:

En donde:
P: es la presión
V: es el volumen
n: es el número de moles del gas
R: es la constante de gases ideales
T: es la temperatura
Cuando el neumático soporta la presión inicial tenemos:
P₁ = 1.5 atm
T₁ = 300 K
(1)
La presión cuando T = 67 °C es:
(2)
Dado que V₁ = V₂ (el volumen del neumático no cambia), al introducir la ecuación (1) en la ecuación (2) podemos encontrar la presión final:
Por lo tanto, si en el transcurso de un viaje las ruedas alcanzan una temperatura de 67 ºC, el neumático soportará una presión de 1.7 atm.
Espero que te sea de utilidad!
Photosynthesis- produced by a producer the capture light and convert it into glucose/ carbohydrates or "food" <span />
Answer:
No, it is not proper to use an infinitely long cylinder model when finding the temperatures near the bottom or top surfaces of a cylinder.
Explanation:
A cylinder is said to be infinitely long when is of a sufficient length. Also, when the diameter of the cylinder is relatively small compared to the length, it is called infinitely long cylinder.
Cylindrical rods can also be treated as infinitely long when dealing with heat transfers at locations far from the top or bottom surfaces. However, it not proper to treat the cylinder as being infinitely long when:
* When the diameter and length are comparable (i.e have the same measurement)
When finding the temperatures near the bottom or top of a cylinder, it is NOT PROPER TO USE AN INFINITELY LONG CYLINDER because heat transfer at those locations can be two-dimensional.
Therefore, the answer to the question is NO, since it is not proper to use an infinitely long cylinder when finding temperatures near the bottom or top of a cylinder.