1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
olga_2 [115]
3 years ago
9

When you see a fish in the water where is it really ?

Physics
1 answer:
photoshop1234 [79]3 years ago
6 0

It really depends on the angle where you look at it from and what type of glass/shape they are in. Mine always appeared pretty close even when it wasn't.


Source: Had 5 fish of my own.


Have a lovely day! ~Pooch ♥

You might be interested in
At a certain location, Earth has a magnetic field of 0.60 ✕ 10−4 T, pointing 75° below the horizontal in a north-south plane. A
saveliy_v [14]

Answer with Explanation:

We are given that

Magnetic field,B=0.6\times 10^{-4} T

\theta=75^{\circ}

Length of wire,l=15 m

Current,I=19 A

a.We have to find the magnitude of magnetic force and direction of magnetic force.

Magnetic force,F=IBlsin\theta

Using the formula

F=0.6\times 10^{-4}\times 15\times 19sin75

F=16.5\times 10^{-3} N

Direction=tan\theta=cot(90-75)=tan15^{\circ}

\theta=15^{\circ}

15 degree above the horizontal  in the northward direction.

5 0
3 years ago
What is the volume of a 1.2kg and displaced 1.0g/cm3
Zinaida [17]
Mass = 1.2 kg = 1200 grams.

Volume = mass/density = 1200 cm3.

Hope this helps!
4 0
4 years ago
On a visit to a science lab, Madison observes a blob of shiny material that is floating in the air.
AfilCa [17]

Answer:

Each force acting on the blob has another one to cancel it out

Explanation:

7 0
3 years ago
Read 2 more answers
The apparent height of a building 10.5 km away is 0.02 radians. What is the approximate height of the building to the nearest me
Ksenya-84 [330]

Answer:

Approximate height of the building is 23213 meters.

Explanation:

Let the height of the building be represented by h.

0.02 radians = 0.02 × \frac{180^{o} }{\pi }

                     = 0.02 x (180/\frac{22}{7})

0.02 radians  = 1.146°

10.5 km = 10500 m

Applying the trigonometric function, we have;

Tan θ = \frac{opposite}{adjacent}

So that,

Tan 1.146° = \frac{h}{10500}

⇒ h = Tan 1.146° x 10500

      = 2.21074 x 10500

      = 23212.77

h = 23213 m

The approximate height of the building is 23213 m.

8 0
3 years ago
Khalid has been studying the gravitational attraction between three pairs of objects. The table shows the distance between each
SCORPION-xisa [38]

Answer:

Explanation:

Probably the most famous force of all is gravity. We humans on earth think of gravity as an apple hitting Isaac Newton on the head. Gravity means that stuff falls down. But this is only our experience of gravity. In truth, just as the earth pulls the apple towards it due to a gravitational force, the apple pulls the earth as well. The thing is, the earth is just so massive that it overwhelms all the gravity interactions of every other object on the planet. Every object with mass exerts a gravitational force on every other object. And there is a formula for calculating the strengths of these forces, as depicted in the diagram below:

Diagram of gravitational forces between two spheres

Diagram of gravitational forces between two spheres

Let’s examine this formula a bit more closely.

F refers to the gravitational force, the vector we ultimately want to compute and pass into our applyForce() function.

G is the universal gravitational constant, which in our world equals 6.67428 x 10^-11 meters cubed per kilogram per second squared. This is a pretty important number if your name is Isaac Newton or Albert Einstein. It’s not an important number if you are a ProcessingJS programmer. Again, it’s a constant that we can use to make the forces in our world weaker or stronger. Just making it equal to one and ignoring it isn’t such a terrible choice either.

m_1m  

1

​  

m, start subscript, 1, end subscript and m_2m  

2

​  

m, start subscript, 2, end subscript are the masses of objects 1 and 2. As we saw with Newton’s second law (\vec{F} = M\vec{A}  

F

=M  

A

F, with, vector, on top, equals, M, A, with, vector, on top), mass is also something we could choose to ignore. After all, shapes drawn on the screen don’t actually have a physical mass. However, if we keep these values, we can create more interesting simulations in which “bigger” objects exert a stronger gravitational force than smaller ones.

\hat{r}  

r

^

r, with, hat, on top refers to the unit vector pointing from object 1 to object 2. As we’ll see in a moment, we can compute this direction vector by subtracting the location of one object from the other.

r^2r  

2

r, squared refers to the distance between the two objects squared. Let’s take a moment to think about this a bit more. With everything on the top of the formula—G, m_1m  

1

​  

m, start subscript, 1, end subscript, m_2m  

2

​  

m, start subscript, 2, end subscript—the bigger its value, the stronger the force. Big mass, big force. Big G, big force. Now, when we divide by something, we have the opposite. The strength of the force is inversely proportional to the distance squared. The farther away an object is, the weaker the force; the closer, the stronger.

Hopefully by now the formula makes some sense to us. We’ve looked at a diagram and dissected the individual components of the formula. Now it’s time to figure out how we translate the math into ProcessingJS code. Let’s make the following assumptions.

We have two objects, and:

Each object has a PVector location: location1 and location2.

Each object has a numeric mass: mass1 and mass2.

There is a numeric variable G for the universal gravitational constant.

Given these assumptions, we want to compute a PVector force, the force of gravity. We’ll do it in two parts. First, we’ll compute the direction of the force \hat{r}  

r

^

r, with, hat, on top in the formula above. Second, we’ll calculate the strength of the force according to the masses and distance.

Remember when we figured out how to have an object accelerate towards the mouse? We're going to use the same logic.

4 0
3 years ago
Other questions:
  • Which statement is true about the formation of bounds
    5·1 answer
  • how long does it take a 750watt heater operating at full rating to rais the temperature of 1kg of water From 40°C to 70°C {S.H.C
    11·1 answer
  • determine the potential difference between two charged parallel plates that are .10 cm apart and have an electric field strength
    11·1 answer
  • The cue ball is deflected so that it makes an angle of 30.0° with its original direction of travel.
    9·1 answer
  • What is the automated system that uses an automated work cell controlled by electronic signals from a common centralized compute
    9·1 answer
  • While on a train, you are holding a string with a ball attached to it. At first, the train’s velocity is constant and the string
    7·1 answer
  • A father and his son want to play on a seesaw. Where on the seesaw should each of them sit to balance the torque?
    5·1 answer
  • Assuming that there is no air resistance, when did ball B hit the ground?
    12·1 answer
  • What do car manufacturers do to reduce the fluid friction acting on a car
    9·2 answers
  • A car has an initial velocity of 9 km/hr and a final velocity of 66 km/hr. What is the cars average velocity? Use one of the fol
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!