Wow ! This one could have some twists and turns in it.
Fasten your seat belt. It's going to be a boompy ride.
-- The buoyant force is precisely the missing <em>30N</em> .
-- In order to calculate the density of the frewium sample, we need to know
its mass and its volume. Then, density = mass/volume .
-- From the weight of the sample in air, we can closely calculate its mass.
Weight = (mass) x (gravity)
185N = (mass) x (9.81 m/s²)
Mass = (185N) / (9.81 m/s²) = <u>18.858 kilograms of frewium</u>
-- For its volume, we need to calculate the volume of the displaced water.
The buoyant force is equal to the weight of displaced water, and the
density of water is about 1 gram per cm³. So the volume of the
displaced water (in cm³) is the same as the number of grams in it.
The weight of the displaced water is 30N, and weight = (mass) (gravity).
30N = (mass of the displaced water) x (9.81 m/s²)
Mass = (30N) / (9.81 m/s²) = 3.058 kilograms
Volume of displaced water = <u>3,058 cm³</u>
Finally, density of the frewium sample = (mass)/(volume)
Density = (18,858 grams) / (3,058 cm³) = <em>6.167 gm/cm³</em> (rounded)
================================================
I'm thinking that this must be the hard way to do it,
because I noticed that
(weight in air) / (buoyant force) = 185N / 30N = <u>6.1666...</u>
So apparently . . .
(density of a sample) / (density of water) =
(weight of the sample in air) / (buoyant force in water) .
I never knew that, but it's a good factoid to keep in my tool-box.
OD because Boyle’s law specifically states
Answer:
<em>The electric field can either oscillates in the z-direction, or the y-direction, but must oscillate in a direction perpendicular to the direction of propagation, and the direction of oscillation of the magnetic field.</em>
Explanation:
Electromagnetic waves are waves that have an oscillating magnetic and electric field, that oscillates perpendicularly to one another. Electromagnetic waves are propagated in a direction perpendicular to both the electric and the magnetic field. If the wave is propagated in the x-direction, then the electric field can either oscillate in the y-direction, or the z-direction but must oscillate perpendicularly to both the the direction of oscillation of the magnetic field, and the direction of propagation of the wave.
Answer:
$900 trillion
Explanation:
If Alaska is 20% of the contiguous US, then the approximate area of interest is ...
1200 miles × 3000 miles = 3.6×10^6 square miles.
The size of a dollar bill is about ...
(6.5 cm)·(15.5 cm) = 100.75 cm^2
One mile is 160,934.4 cm, so 1 square mile is about ...
1 mi^2 = (160,934.4 cm)^2 ≈ 2.59·10^10 cm^2
The number of dollars of interest is then ...
(3.6 · 10^6 mi^2)(2.59 · 10^10 cm^2)/(100.75 cm^2) ≈ 9.3·10^14
≈ 930 × 10^12 . . . dollars
It would cost about 900 trillion dollars to cover the land area of the US in $1 bills.
Answer:
α =18.75 rad/s²
Explanation:
Given that
Acceleration a = 0.15 g
We know that g =10 m/s²
a= 0.15 x 10 = 1.5 m/s²
d= 16 cm
Radius r= 8 cm
Lets take angular acceleration =α rad/s²
As we know that
a= α r
Now by putting the values
1.5 = α x 0.08
α =18.75 rad/s²