Answer:
The value is 
Explanation:
From the question we are told that
The speed is 
The radius of the earth is 
Generally the circumfernce of the earth is mathematically evaluated as

=> 
=> 
Generally the time taken is mathematically represented as


Converting to days

=> 
Answer:
the final angular velocity of the platform with its load is 1.0356 rad/s
Explanation:
Given that;
mass of circular platform m = 97.1 kg
Initial angular velocity of platform ω₀ = 1.63 rad/s
mass of banana
= 8.97 kg
at distance r = 4/5 { radius of platform }
mass of monkey
= 22.1 kg
at edge = R
R = 1.73 m
now since there is No external Torque
Angular momentum will be conserved, so;
mR²/2 × ω₀ = [ mR²/2 +
(
R)² +
R² ]w
m/2 × ω₀ = [ m/2 +
(
)² +
]w
we substitute
w = 97.1/2 × 1.63 / ( 97.1/2 + 8.97(16/25) + 22.1
w = 48.55 × [ 1.63 / ( 48.55 + 5.7408 + 22.1 )
w = 48.55 × [ 1.63 / ( 76.3908 ) ]
w = 48.55 × 0.02133
w = 1.0356 rad/s
Therefore; the final angular velocity of the platform with its load is 1.0356 rad/s
Answer:Two early signs of dehydration are thirst and dark-coloured urine. This is the body's way of trying to increase water intake and decrease water loss.
Explanation:
The density of the object is approximately 1.91 kg per m³.
42 kg is a measure of mass, and 22 m³ is a measure of volume. Knowing this, you can use the relationship

to solve for the object's density.
42 kg

22 m³

1.91 kg per m³.
The energy stored by a system of capacitors is given by

where Ceq is the equivalent capacitance of the system, and V is the voltage applied.
In the formula, we can see there is a direct proportionality between U and C. This means that if we want to increase the energy stored by 4 times, we have to increase C by 4 times, if we keep the same voltage.
Calling

the capacitance of the original capacitor, we can solve the problem by asking that, adding a new capacitor with

, the new equivalent capacitance of the system

must be equal to

. If we add the new capacitance X in parallel, the equivalent capacitance of the new system is the sum of the two capacitance

and since Ceq must be equal to 4 C1, we can write

from which we find