Answer:
The answer is below
Explanation:
a) The initial velocity (u) = 24 m/s
We can solve this problem using the formula:
v² = u² - 2gh
where v = final velocity, g= acceleration due to gravity = 9.8 m/s², h = height.
At maximum height, the final velocity = 0 m/s
v² = u² - 2gh
0² = 24² - 2(9.8)h
2(9.8)h = 24²
2(9.8)h = 576
19.6h = 576
h = 29.4 m
b) The time taken to reach the maximum height is given as:
v = u - gt
0 = 24 - 9.8t
9.8t = 24
t = 2.45 s
The total time needed for the apple to return to its original position = 2t = 2 * 2.45 = 4.9 s
Explanation:
direction of electric field is same as that of force experienced by the test charge
Answer:
14.57 ohms
Explanation:
Here in the figure ,Rb & R₄are in series & also Rc & R₅ are in series. As they are in series , ( Rb + R₄ ) & (Rc & R₅) are in parallel . So the equivalent resistance in that branch = ( 2 + 18 ) ║ ( 3 + 12 )
= 20 ║ 15
= (20×15) / (20 + 15)
= 8.57 ohms
Also Ra ( 6 ohm ) is in series with that branch ,. So the equivalent resistance of the whole circuit = 8.57 + 6 = 14.57 ohms.
Newton's second law states that the resultant of the forces applied to an object is equal to the product between the object's mass and its acceleration:

where in our problem, m is the mass the (child+cart) and a is the acceleration of the system.
We are only concerned about what it happens on the horizontal axis, so there are two forces acting on the cart+child system: the force F of the man pushing it, and the frictional force

acting in the opposite direction. So Newton's second law can be rewritten as

or

since the frictional force is 15 N and we want to achieve an acceleration of

, we can substitute these values to find what is the force the man needs: