Answer:
6.67 ohm
Explanation:
From the question given above, the following data were obtained:
Resistor 1 (R₁) =20 ohm
Resistor 2 (R₂) = 20 ohm
Resistor 3 (R₃) = 20 ohm
Equivalent Resistance (R) =?
Since the resistors are arranged in parallel connection, the equivalent resistance can be obtained as follow:
1/R = 1/R₁ + 1/R₂ + 1/R₃
1/R = 1/20 + 1/20 + 1/20
1/R = (1 + 1 + 1) / 20
1/R = 3/20
Invert
R = 20/3
R = 6.67 ohm
Therefore, the equivalent resistance is 6.67 ohm.
Answer:
Explanation:
a ) The direction of angular velocity vector of second hand will be along the line going into the plane of dial perpendicular to it.
b ) If the angular acceleration of a rigid body is zero, the angular velocity will remain constant.
c ) If another planet the same size as Earth were put into orbit around the Sun along with Earth the moment of inertia of the system will increase because the mass of the system increases. Moment of inertia depends upon mass and its distribution around the axis.
d ) Increasing the number of blades on a propeller increases the moment of inertia , because both mass and mass distribution around axis of rotation increases.
e ) It is not possible that a body has the same moment of inertia for all possible axes because a body can not remain symmetrical about all axes possible. Sphere has same moment of inertia about all axes passing through its centre.
f ) To maximize the moment of inertia of a flywheel while minimizing its weight, the shape and distribution of mass should be such that maximum mass of the body may be situated at far end of the body from axis of rotation . So flywheel must have thick outer boundaries and this should be
attached with axis with the help of thin rods .
g ) When the body is rotating at the same place , its translational kinetic energy is zero but its rotational energy can be increased
at the same place.
Answer:
a) 145.6kgm^2
b) 158.4kg-m^2/s
c) 0.76rads/s
Explanation:
Complete qestion: a) the rotational inertia of the merry-go-round about its axis of rotation
(b) the magnitude of the angular momentum of the child, while running, about the axis of rotation of the merry-go-round and
(c) the angular speed of the merry-go-round and child after the child has jumped on.
a) From I = MK^2
I = (160Kg)(0.91m)^2
I = 145.6kgm^2
b) The magnitude of the angular momentum is given by:
L= r × p The raduis and momentum are perpendicular.
L = r × mc
L = (1.20m)(44.0kg)(3.0m/s)
L = 158.4kg-m^2/s
c) The total moment of inertia comprises of the merry- go - round and the child. the angular speed is given by:
L = Iw
158.4kgm^2/s = [145kgm^2 + ( 44.0kg)(1.20)^2]
w = 158.6/208.96
w = 0.76rad/s
Answer:
f = 12 cm
Explanation:
<u>Center of Curvature</u>:
The center of that hollow sphere, whose part is the spherical mirror, is known as the ‘Center of Curvature’ of mirror.
<u>The Radius of Curvature</u>:
The radius of that hollow sphere, whose part is the spherical mirror, is known as the ‘Radius of Curvature’ of mirror. It is the distance from pole to the center of curvature.
<u>Focal Length</u>:
The distance between principal focus and pole is called ‘Focal Length’. It is denoted by ‘F’.
The focal length of the spherical (concave) mirror is approximately equal to half of the radius of curvature:

where,
f = focal length = ?
R = Radius of curvature = 24 cm
Therefore,

<u>f = 12 cm</u>
Because mass does not change from place to place but weight does change from place to place... why? because weight is the amount of gravitational force on an object and mass is the amount of matter in an object. mars has less gravitational force so an object will weigh less than it really weighs there